
Caenorhabditis elegans as a model system for
human diseases
Maria Markaki1 and Nektarios Tavernarakis1,2

Available online at www.sciencedirect.com

ScienceDirect
The nematode Caenorhabditis elegans offers unique advantages

that enable a comprehensive delineation of the cellular and

molecular mechanisms underlying devastating human

pathologies such as stroke, ischemia and age-associated

neurodegenerative disorders. Genetic models of human

diseases that closely simulate several disease-related

phenotypes have been established in the worm. These models

allow the implementation of multidisciplinary approaches, in

addition to large-scale genetic and pharmacological screenings,

designed to elucidate the molecular mechanisms mediating

pathogenesis and to identify targets and drugs for emergent

therapeutic interventions. Such strategies have already provided

valuable insights, highly relevant to human health and quality of

life. This article considers the potential of C. elegans as a versatile

platform for systematic dissection of the molecular basis of

human disease, focusing on neurodegenerative disorders.
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Introduction: an overview of Caenorhabditis
elegans as a versatile model organism
Caenorhabditis elegans is a non-parasitic, free-living nema-

tode found worldwide feeding on various bacterial spe-

cies. Besides, the worm can be also easily cultivated in

large numbers on agar plates or in liquid medium sup-

plemented with Escherichia coli. This simple multicellular

organism exists primarily as a hermaphrodite, although

males arise occasionally at a frequency of �0.2%. Mature

adults are 1 mm long and consist of 959 and 1031 somatic

cells, the hermaphrodites and the males respectively. The

anatomical arrangement of all somatic cells together with
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their entire cell lineage is known. The nervous system of

C. elegans is fully charted with the position and the

connectivity of each of 302 neurons precisely described

[1,2]. The nematode has a short life cycle of �3.5 days at

20�C from egg through four larval stages to egg-laying

adult and lives up to 2–3 weeks under favourable condi-

tions. A wild-type worm can generate about 300 progeny

by self-fertilization and over 1000 progeny when fertilized

by a male. With its transparent body at all stages of its life

cycle, which enables the use of fluorescent markers, and

its small size, C. elegans lends itself to non-invasive optical

monitoring and manipulation methodologies. Such

approaches have helped to investigate the molecular

mechanisms underlying normal function and dysfunction

at all levels from cellular organelles to the whole organism

during development and ageing. The completely

sequenced C. elegans genome, which is only 97 Mb in size,

has an estimated 60–80% of genes with homologues in

humans [3,4]. These unique advantages together with the

development of powerful molecular biology and genetic

methodologies such as transgenesis, mutagenesis, gene

targeting, among others, have enabled the dissection of

classical signalling pathways that underlie development,

neurobiology, cell death and ageing [5–8]. Besides, C.
elegans research has advanced our understanding of the

causal mechanisms behind a range of common human

pathologies such as ischemia, stroke, and protein misfold-

ing and aggregation diseases, including age-related neuro-

degenerative disorders. Noteworthy, the range of resources

that are available to the worm community has contributed

significantly to the rapid adoption of C. elegans as a model

system for biomedical research. One such worm-specific

resource is the WormBase (www.wormbase.org), the cen-

tral data repository for C. elegans and other related nematode

species. WormBase contains a wealth of information about

gene structures, mutant and RNAi phenotypes, gene

expressionpatternsbasedonmicroarrayandRNA-seq data,

gene-interaction and protein-interaction networks, among

other experimental data sets [9]. An article just published

describes the most recent improvements to the WormBase

services with respect to: 1) literature curation; 2) new

interfaces that allow users to query and visualize sequence

and phenotype ontologies and 3) the architecture of the

WormBase website [10�]. In conclusion, the powerful plat-

form that C. elegans offers for a thorough dissection of the

molecular and cellular basis of human disease, together

with a wide range of resources and tools make the worm a

valuable disease model (Table 1).

Modelling a human disease in the worm requires genetic

engineering to alter the animal’s genome. This can be
www.sciencedirect.com
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Table 1

Selected C. elegans human disease models

Disease

Disease-associated protein Synopsis of pathological features in C. elegans References

Neurodegenerative/Neuromuscular disorders

AD
Human Amyloid b (Ab) peptide

Muscle-associated Ab1-42 oligomers cause paralysis [15]

Neuronal Ab expression leads to chemotaxis defects [26�]
APP/APL-1 Inactivation or overexpression of apl-1 causes severe

developmental defects

[52]

AD-relevant tau

PHP-tau Increased tau aggregation, locomotion defects and

neuronal dysfunction

[19,53]

PD Humana-synuclein Misfolded a-synuclein aggregates, dopaminergic neuron

loss

[37]

PARK9/ATP13A2/CATP-6, DJ-1/DJR-

1.1/DJR-1.2, PINK1/ PINK-1

RNAi-mediated knockdown enhances a-synuclein

misfolding /increases mitochondrial accumulation and

compromises stress resistance

[35,42]

LRRK2/LRK-1 Enhanced loss of dopaminergic neurons [42]

PQ

polyQ expansion Muscle (polyQm) or neuronal (polyQn) expression induces

toxicity

[44,48]

HD

Expression of human Htt in body wall

muscle or sensory (ASH) neurons

Motility defects or

ASH neurodegeneration [4,54]

ALS

SOD1 Pan-neuronal expression causes severe locomotion

defects

Mutations cause mild toxicity in body wall muscles

influenced by the genetic background [54]
ALS8/VPR-1 Inactivation leads to dysregulation of Eph receptor

signalling in vivo

SMA SMN/SMN-1

Late larval arrest, lifespan shortening, defects in motility,

decreased pharyngeal pumping

[55]

DMD Dystrofin/DYS-1 Mutants display muscle degeneration [4,54]

Laminopathies LMNA/LMN-1, emerin/EMR-1 Mutations cause severe muscle lesions leading to crawling

and swimming motility defects

[55]

OPMD PABPN1 Mutants exhibit muscle cell degeneration and abnormal

motility

[56]

Stroke-Excitotoxicity

Specific ion channels

(DEG-1, MEC-4, DEG-3, GSA-1 in

nematode)

Specific proteases (calpains CLP-1,

TRA-3 and aspartyl proteases ASP-3,

ASP-4 in nematode)

Neurodegeneration [54]

Metabolic disorders

Obesity, insulin resistance,

type II diabetes)

OGT-1, OGA-1 Null mutants exhibit alterations in carbohydrate and lipid

metabolism

[57,58]

Genetic kidney diseases

Cystic kidney diseases and

ciliopathies

ADPKD PDK-1 (LOV-1), PDK2 (PDK-2) Gene knockdown causes male mating defects [4]

Bardet-Biedl syndrome BBS1(BBS-1), BBS-2(BBS-2), BBS7

(OSM-12) BBS8(BBS-8), BBS9 (BBS-9),

MKS1 (MKS-1)

Mutants exhibit structural and functional cilia defects [59]

Cancer c-Met Locomotion defects, low fecundity and abnormal larval

development

[60]LET-60/Ras Multivulval phenotype

CEP-1/p53 Mutations cause apoptotic defects linked to

tumorigenesis and resistance to chemotherapeutic drugs

Innate Immunity

Host-pathogen interaction P38 MAP/PMK-1 Loss of function mutations cause hypersensitivity to

infections

[61]

AD, Alzheimer’s disease; ADPKD, autosomal dominant polycystic kidney disease; ALS, amyotrophic lateral sclerosis; c-Met, receptor tyrosine-

protein kinase Met; DMD, Duchenne muscular dystrophy; HD, Huntington’s disease; Htt, Huntingtin; LMNA, lamin-A/C; LRRK2, leucine-rich repeat

kinase 2; OGA-1, an orthologue of O-GlcNAcase; OGT-1, an orthologue of O-linked N-acetylglucosamine (GlcNAc) transferase; OPMD, oculophar-

yngeal muscular dystrophy PD, Parkinson’s disease; PDK, polycystin; PQ, polyglutamine disorders; P38 MAP/PMK-1, mitogen-activated protein

kinase 1; SMA, spinal muscular atrophy; SMN, survival motor neuron protein; SOD1, Cu/Zn superoxide dismutase.

www.sciencedirect.com Current Opinion in Biotechnology 2020, 63:118–125



120 Systems biology
achieved either by disrupting the expression of the C.
elegans homologue of the human disease gene to induce a

mutant phenotype or by overexpressing the human gene

implicated in disease ubiquitously or in specific tissues so

as to reproduce disease-related phenotypes in the worm

[4]. The nematode model can then be used in forward and

reverse genetic screens aiming to identify modifiers of the

disease phenotype. The identified genes can be subse-

quently cloned and thoroughly characterized with the

ultimate goal of investigating their functional conserva-

tion in more complex vertebrate disease models.

Here, we focus on C. elegans models that have contributed

substantially to our understanding of devastating neuro-

degenerative disorders, highlighting recent advances that

shed light on the cellular and molecular mechanisms

underlying pathogenesis.

Modelling neurodegenerative diseases in C.
elegans
Ageing in diverse organisms is associated with a collapse

of protein homeostasis (hereafter, proteostasis) [11].

Moreover, loss of proteostasis is a hallmark of distinct

neurodegenerative diseases. Indeed, it is becoming pro-

gressively clear that age-related misfolding and aggrega-

tion of neurotoxic peptides is responsible for several

neurological disorders such as Parkinson’s disease,

Alzheimer’s disease and Huntington’s disease, among

others [12]. Recent studies capitalize on the genetic

malleability of C. elegans to investigate the mechanisms

underlying proteotoxic diseases. Below, we selected a few

key discoveries in the field of neurodegenerative diseases

that have emerged during the last years using C. elegans as

a model system (Figure 1).
Figure 1
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aSyn: a-synuclein; polyQ: polyglutamine repeats.
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Alzheimer’s disease
Alzheimer’s disease (AD) is the leading cause of demen-

tia in the elderly, with predicted prevalence of 66 million

people by 2030. The mechanisms underlying the patho-

genesis of AD remain largely unknown and its pattern of

inheritance most likely depends on a combination of

genetic and environmental factors. The disease patholog-

ically is characterized by the presence of plaques of

amyloid b peptides and intraneuronal tangles of hyper-

phosphorylated forms of microtubule-associated protein

tau [13]. Mutations in the presenilin 1 (PS1), presenilin 2

(PS2) and amyloid b-protein precursor (APP) genes,

which are linked to familiar AD, increase the extracellular

concentration of the most toxic form of the amyloid b
peptide (Ab1–42) [14]. It is worth noting that genome wide

association studies of large cohorts of patients with AD

over the past decade have culminated in the identification

of novel risk genetic loci for AD [13].

Several transgenic C. elegans models of AD have been

established by expressing either human amyloid b (Ab) or

tau in specific cell types such as body wall muscle cells

and neurons. Interestingly, expression of the Ab1–42 pep-

tide in body wall muscle cells causes accumulation of

toxic Ab oligomers and paralysis that is exacerbated

during ageing [15–17]. Another transgenic nematode

strain that expresses Ab1–42 driven by the eat-4 gene

promoter exhibits progressive loss of glutamatergic neu-

rons during ageing. This strain has been used to validate

the functional link between Ab toxicity and endocytic

trafficking previously revealed by a genetic screen in

yeast. To this end, animals expressing the peat-4 Ab1–42

transgene were crossed with animals that express C.
elegans homologues of the yeast genes involved in cla-

thrin-mediated endocytosis, namely unc-11, unc-26 and
pan-neu rona l expression

Aβ pep tide  (A D)
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ated in disease in specific cell types. Selected nematode models of

ses are depicted. Ab: amyloid beta; APP: amyloid-precursor protein;
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Figure 2
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Mitophagy defects play a crucial role in neuronal deterioration and

cognitive decline associated with amyloid-b (Ab) and tau pathology in

Alzheimer’s disease (AD).
Y44E3A.4, under the control of eat-4 promoter. All three

genes mitigated glutamatergic neuron loss by promoting

Ab detoxification and restoration of endocytic homeosta-

sis [18].

Animals expressing the highly amyloidogenic tau species

specifically in neurons display increased tau aggregation

accompanied by neuronal dysfunction and motility

defects that are manifested as uncoordinated (Unc) loco-

motion [19,20]. Reverse and forward genetic screens for

suppressors of the tau-induced Unc phenotype have

identified sut-1 and sut-2, respectively, as determinants

of tau-mediated neurotoxicity. Accordingly, sut-2 over-

expession exacerbates tau–associated pathology. By con-

trast, sut-2 knockdown protects against tau-induced neu-

ronal dysfunction [21,22]. A novel C. elegans AD model

with constitutively pan-neuronal Ab1–42 expression has

provided new insight into the metabolic basis of AD

pathogenesis. Indeed, this AD model displays markedly

reduced ATP levels and dysfunctions in electron trans-

port chain (ETC) complexes that precede global meta-

bolic failure. In addition, Ab-expressing animals experi-

ence neuromuscular defects and middle-age onset

behavioural phenotypes [23]. A recent comprehensive

review summarizes the various Ab and tau C. elegans
models of AD that have been used to identify genetic

and pharmacological modifiers of the disease [24].

Recently, a collaborative study established the contri-

bution of defective mitophagy to AD onset and progres-

sion in a manner that is conserved from C. elegans and

mice to humans. Focusing on C. elegans, it has been

shown that mitophagy induction through supplementa-

tion of NAD+, urolithin A, and actinonin is able to

reverse cognitive deficits in both Ab and tau nematode

models of AD. This amelioration of memory perfor-

mance depends on the PINK-1 (PTEN-induced

kinase-1), PDR-1 (Parkinson’s disease-related-1/ Parkin)

or DCT-1 (DAF-16/FOXO-controlled germline-tumour

affecting) pathways (Figure 2) [25��].

Emerging findings indicate that neuronal or intestinal

expression of the active form of the endoplasmic reticu-

lum unfolded protein response (UPRER) transcription

factor XBP-1, XBP-1s, protects against multiple proteo-

toxic species including Ab1–42 peptide. Specifically, it has

been shown that the expression of xbp-1s in neurons or the

intestine rescues the loss of chemotaxis in nematodes

expressing Ab1–42 pan-neuronally (snb-1pAb1–42). In this

context, enhanced neuroprotection is mediated by the

upregulation of lysosomal genes resulting in increased

lysosomal function across tissues [26�].

Parkinson’s disease
Parkinson’s disease (PD) is the second most common

neurodegenerative disorder after AD, affecting roughly

2% of the population over 65 years of age [27��].
www.sciencedirect.com 
Currently, a combination of genetic and environmental

factors is believed to be the cause of disease onset and

progression in many cases [28,29]. Clinically, the disease

is defined by motor symptoms including tremor, brady-

kinesia, rigidity and problems with balance and coordina-

tion. These symptoms are primarily due to the gradual

loss of dopaminergic neurons in the substantia nigra pars

compacta, leading to decreased release of the neurotrans-

mitter dopamine that activates dopamine receptors. Peo-

ple with PD may also experience non-motor symptoms

such as cognitive impairment, sleep disturbances, abnor-

mal olfaction, anxiety and depression. Pathologically, PD

is characterized by the formation of intraneuronal Lewy

bodies and Lewy neurites composed mainly of a-synu-
clein [30]. This is a protein of 140 residues predominantly

expressed in the human brain, where it localizes to

presynaptic nerve terminals [31]. Notably, a growing body

of evidence supports a crucial role for a-synuclein in

regulating dopamine metabolism and neuro-transmission
Current Opinion in Biotechnology 2020, 63:118–125
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[32]. Readers are referred to a comprehensive survey of

the cellular and molecular mechanisms underlying PD

pathogenesis, where recent advances in diagnostics

screening and prevention are also discussed [27��].

C. elegans PD models that express human a-synuclein
under the control of cell-type specific promoters have

enabled researchers to monitor the formation of a
–synuclein inclusions in living animals (Figure 1). Spe-

cifically, worms expressing human a-synuclein fused to

yellow fluorescent protein in the body wall muscle have

been shown to display an increased formation of inclu-

sions with aggregated a-synuclein during ageing. This

model has been used in a genome-wide RNAi screen for

modifiers of inclusion formation. The screen revealed

80 genes, including ageing-associated genes, 49 of which

have a human orthologue [33]. An extension of this work

identified the tryptophan-converting enzyme tryptophan

2,3-dioxygenase (TDO-2) as a crucial regulator of protein

homeostasis during ageing. In fact, knockdown of tdo-2
increases tryptophan levels and suppresses a-synuclein-
induced toxicity in C. elegans, suggesting that tdo-2 reg-

ulates proteotoxicity through tryptophan. Moreover,

TDO-2 depletion extends lifespan in these worms [34].

A similar C. elegans model of PD that expresses a fusion of

human a-synuclein to GFP in body wall muscles has been

used in a hypothesis-based RNAi screen for enhancers of

age-associated accumulation of a-synuclein aggregates.

In this case, nematode orthologues to established human

familiar PD genes were preselected as a foundation to

compose a candidate gene list. A set of initially identified

a-synuclein modifiers was further tested in a nematode

model of PD that expresses a-synuclein under the control

of the dopamine transporter (dat-1) gene promoter. This

analysis revealed five potentially neuroprotective genes,

the most representative of which were involved in vesic-

ular trafficking [35]. The same transgenic C. elegans strain

was previously used to validate the neuroprotective

potential of TOR-2 (the nematode orthologue of human

torsin family 1 member B) and mammalian Rab1A, a

GTPase involved in ER-to-Golgi transport [36,37]. Col-

lectively, these studies support the notion that

a-synuclein toxicity is largely associated with defective

ER-to-Golgi vesicular transport.

Several lines of evidence have somehow implicated the

Ca2+- and Mn2+-transporting ATPase PMR-1 (plasma

membrane-related Ca2+-ATPase 1) in a-synuclein cyto-

toxicity. A recent study has revealed that heat precondi-

tioning of nematodes expressing a-synuclein under the

dat-1 promoter at a mildly elevated temperature protects

against dopaminergic neuron loss. Neuroprotection

requires the heat shock transcription factor HSF-1 and

the small heat shock protein HSP-16.1 that localizes to

the Golgi, where it acts together with PMR-1 to maintain

Ca2+ homeostasis, thereby alleviating neuronal demise.

Noteworthy, this is an evolutionarily conserved hormetic
Current Opinion in Biotechnology 2020, 63:118–125 
mechanism that defends against various harmful insults,

including heat-induced necrosis as evidenced in a C.
elegans heat stroke paradigm [38].

In an attempt to shed new light on the pathogenic

mechanisms of PD, a recent study has uncovered a crucial

role for the mitochondrial endonuclease G (EndoG) in

mediating a-synuclein cytotoxity. Consistently, deple-

tion of the C. elegans EndoG homologue CPS-6 amelio-

rates dopaminergic neuron loss in animals that express

dat-1 driven a-synuclein. More importantly, this mecha-

nism has been shown to be evolutionarily conserved [39].

Recently, the same PD model has been used for validat-

ing the results of a lipidomic analysis performed in yeast

cells expressing a-synuclein. This analysis revealed that

a-synuclein toxicity is causatively associated with altera-

tions in lipid/fatty acid homeostasis, leading to excessive

accumulation of oleic acid (OA) and diglycerides. Indeed,

depletion of the FAT-6 and FAT-7 steroyl CoA desa-

turases, which convert stearic acid into the monounsatu-

rated OA, rescued the a-synuclein -induced dopaminer-

gic neuron loss in the nematode PD model. This

cytoprotective mechanism is also evolutionarily con-

served [40�].

One of the main challenges for PD research is to delineate

the complex interactions between genes or between

genes and the environment. In this regard, C. elegans hold

promise for deciphering disease pathogenesis and thereof

accelerating the development of effective intervention

strategies [41�]. Indeed, transgenic and toxicant C. elegans
models of PD are currently available, providing the

essential tools required to explore the molecular mecha-

nisms underlying the disease and to identify potential

therapeutic targets [42].

Polyglutamine diseases
Polyglutamine expansion (polyQ) diseases comprise sev-

eral neurodegenerative or neuromuscular disorders such

as Huntington’s disease (HD), several spinocerebellar

ataxias and spino-bulbar muscular atrophy, among others.

They are all associated with an expansion of GAC triplets

in the coding region of seemingly unrelated genes encod-

ing proteins with expanded glutamine stretches that are

prone to aggregate. The length of polyQ expansions as

well as the host sequences surrounding the repeats con-

stitutes critical determinants of the severity and the age of

the disease onset [43].

C. elegans models that simulate polyQ-associated aggrega-

tion and toxicity have been successfully used for delin-

eating the cellular and molecular mechanisms underlying

polyglutamine pathogenesis. More specifically, a trans-

genic strain that expresses expanded polyQ tracts fused to

yellow fluorescent protein (YFP) under the control of the

unc-54 promoter has been generated to drive expression

in body wall muscles. This model exhibits polyQ
www.sciencedirect.com
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length-dependent aggregation and toxicity that exacer-

bate with age. The threshold for aggregation and polyQ-

mediated motility defects is dynamic; an expansion of

glutamine repeats beyond a critical length of Q35 to Q40

results in aggregate formation and cellular dysfunction

[44]. A genome-wide RNAi screen using this polyQ-

expansion model has revealed 186 genes involved in

RNA metabolism, protein synthesis, protein folding

and protein degradation that induce early onset polyglu-

tamine aggregation when downregulated [45]. Another

screen for suppressors of aggregation in Q35 worms, has

identified genes categorized in diverse functional classes,

namely cell structure, protein transport, cell growth and

replication, energy and metabolism [46]. A recent study

has shown that the negative regulator of cell cycle and

apoptosis CCAR-1 worsens proteostasis impairment in

this HD model by negatively regulating the heat shock

response (HSR). Conversely, knockdown of ccra-1
decreases polyglutamine aggregation and paralysis and

inhibits the age-related decline of the HSR. Protection

against polyQ toxicity depends on the activity of SIR-2.1,

a bona fide protein deacetylase [47].

Moreover, C. elegans models that express polyQ repeats in

specific neurons such as ASH sensory neurons and touch

receptor neurons as well as throughout the nervous sys-

tem have successfully recapitulated several pathological

phenotypes of polyQ diseases and provided critical

insights into the basis of neuron-specific pathogenesis

[48,49]. Motor neurons of the ventral (VNC) and dorsal

(DNC) nerve cord in Q40 expressing animals appear to be

more vulnerable to polyQ aggregates than the ALM

mechanosensory neurons, BDU interneurons, HSN

motor neurons and the CAN neurons. These findings

indicate that neuron-specific features such as neuronal

function, connectivity and activity levels, among others,

influence the aggregation of polyQ proteins at the patho-

genic threshold [48].

Interestingly, emerging observations suggest that the age-

related toxicity in protein misfolding disorders encom-

passes both cell-autonomous and non-cell autonomous

effects [50]. Accumulating evidence indicates that the

toxic protein aggregates in polyQ diseases can spread to

neighbouring cells in a prion-like manner. Prion-like

spreading has been successfully modelled in C. elegans
through overexpression of glutamine/asparagine (Q/N)-

rich prion domain NM of the cytosolic yeast prion protein

Sup35. The NM domain forms aggregates with cell-

autonomous and non-cell autonomous effects. Moreover,

NM is targeted by the lysosomal-autophagy pathway and

more importantly, the prion domain spreads between

cells and tissues by vesicular transport [50].

As previously mentioned, expression of xbp-1s in either

neurons or the intestine suppresses proteotoxicity by

reducing the abundance of toxic protein species through
www.sciencedirect.com 
lysosome activation across tissues, thus restoring proteos-

tasis. This mechanism is responsible for the degradation

of aggregated polyQ40 and subsequent amelioration of

neuronal function in a C. elegans HD model, wherein

polyQ expansions are expressed pan-neuronally (rgef-
1pQ40::YFP) [26�]. A follow- up study has shown that

changes in lipid balance mediate protection against pro-

teotoxicity downstream of lysosome activation in animals

expressing xbp-1s specifically in neurons or the intestine.

Furthermore, oleic acid supplementation is sufficient to

promote clearance of at least neuronal polyQ40 aggre-

gates and to reduce the levels of oxidized proteins,

thereby protecting against proteotoxicity [51].

Concluding remarks
Although not perfectly recapitulating the complete

pathophysiology of human diseases, C. elegans models

have successfully contributed to the identification and

thorough characterization of genes and molecular path-

ways involved in disease pathogenesis and to the identi-

fication of disease modifiers and candidate therapeutic

targets. More significantly, these models have, in many

cases, proved to be predictive for more complex organ-

isms, therefore yielding critical insights with relevance to

human health and quality of life.
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