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Abstract

The DEG/ENaC (Degenerin/Epithelial Sodium Channel) protein family comprises related ion channel subunits from all
metazoans, including humans. Members of this protein family play roles in several important biological processes such as
transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid
sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood.
Given the considerable experimental limitations associated with the crystallization of integral membrane proteins,
knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into
the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based
on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1). MEC-4 and UNC-8 are two DEG/ENaC family
members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used
these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4
model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in
increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further
investigate the multimeric organization of the DEG/ENaC ion channel complex.
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Introduction

The DEG/ENaC family of ion channels is a large group of

proteins sharing a high degree of sequence and overall primary

structure similarity. Members of the DEG/ENaC family have

been identified in organisms ranging from nematodes, snails, flies,

vertebrates, including humans, and are expressed in tissues as

diverse as kidney epithelia, muscle and neurons [1,2]. While

DEG/ENaC proteins are involved in many diverse biological

functions in different organisms, they display strong sequence

conservation across species. The extensive sequence similarity

indicates that DEG/ENaC family members shared a common

ancestor relatively early in evolution and a highly conserved

overall structure [3].

DEG/ENaC proteins range from about 550 to 950 amino acids

in length and share several distinguishing blocks of sequence

similarity. Subunit topology is invariable: all DEG/ENaC family

members have two transmembrane domains, with cysteine-rich

domains (CRDs) situated between these two transmembrane

segments [2,4]. DEG/ENaCs are situated in the membrane such

that amino- and carboxy-termini project into the cytoplasm while

most of the protein, including the CRDs, is extracellular. Highly

conserved regions include the two transmembrane helices (TM I

and II), a short amino acid stretch before the first transmembrane

helix, the extracellular cysteine-rich domains (CRDs), an extracel-

lular regulatory domain and a neurotoxin-related domain (NTD)

before the predicted transmembrane helix II. The high degree of

conservation of cysteine residues in these extracellular domains

suggests that the tertiary structure of this region is critical for the

function of most channel subunits and may mediate interactions

with extracellular structures. The first of the two transmembrane

helices (TM I) is generally hydrophobic, whereas the more carboxy-

terminal of these (TM II) is amphipathic. TM II exhibits strong

conservation of residues (consensus GLWxGxSxxTxxE) and has

been implicated in pore function [5].

All living organisms have developed highly specialized struc-

tures that are receptive to mechanical forces originating either

from the surrounding environment or from within the organism

itself. The mechanisms underlying the capability of living cells to

receive and act in response to mechanical inputs emerged early

during evolution. Genetic, molecular and electrophysiological

studies have implicated specific DEG/ENaC ion channels in

mechanotransduction in nematodes, flies and mammals [5].

Therefore, these proteins are strong candidates for a metazoan

mechanosensitive ion channel [2]. The Caenorhabditis elegans

degenerins MEC-4 (Mechanosensory) and UNC-8 (Uncoordinated)

are two DEG/ENaC family members required for the mechan-

osensitive behaviors of touch sensation and proprioception,

respectively, of the nematode [5]. MEC-4 and the related MEC-

10 ion channel subunit form the core mechanosensory ion channel

in touch receptor neurons of the animal [6]. UNC-8 likely co-

assembles with the related DEG/ENaC protein DEL-1 (Degen-

erin-like) into a stretch sensitive channel in motor neuron process

modulates coordinated movement in response to body stretch [7].

However, the mechanism by which mechanical forces impinge

upon mechanosensitive channel subunits to modulate open
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channel probability remains elusive. Information on the structure

and overall organization of the mechanosensitive ion channel is

required to address this question.

Recently, the structure of the related chicken ASIC1 ion

channel was determined by crystallography [8,9]. ASIC1 belongs

to the family of acid-sensing ion channels (ASICs), which are

similar in sequence and are therefore expected to exhibit similar

overall topology to the DEG/ENaC ion channels [10]. Members

of the mammalian ASIC subfamily are gated by protons and have

been implicated in neurotransmission, in the central nervous

system [11,12].

Here, we describe homology-based models of MEC-4 and

UNC-8 (accessible at http://elegans.imbb.forth.gr/models/). Four

models of MEC-4 and four models UNC-8 subunits were obtained

based on the 3 subunit structures of the homo-trimeric, closed acid

sensing ion channel (ASIC1) of chicken (PDB ID: 2QTS; [9]) and

on the one subunit structure of the minimal function construct of

the same channel and organism (PDB ID: 3HGC; [8]). The

truncated protein variant used to obtain the first crystal structure

(henceforth called 2QTS) comprises 438 amino acids (26–463).

Only residues 42–457 (subunit A), 42–461 (subunit B) and 40–457

(subunit C) could be located in the electron density maps at 1.9 Å

resolution. This truncated protein variant does not exhibit proton-

dependent gating.

The minimal function DNA construct (mfc) used to obtain the

second protein crystal structure (henceforth called 3HGC) encodes

466 amino acids (1–466). In this case, only 406 residues (46–451)

could be located in the lower resolution (3 Å) electron density

map. Structures comprising all visible residues have been used for

modeling the MEC-4 and UNC-8 subunits A, B, C and H. These

subunit models can be used to determine the location of amino

acid residue alterations encoded by mutant alleles, relative to

defined channel structural features.

In addition, based on both structures (3 different subunits

forming a trimer in 2QTS and one subunit forming a trimer in

3HGC), 2 models of MEC-4 forming a trimer were derived and

used to examine the structural and functional effects of the MEC-4

gain-of-function allele u231 (ARV). The overall model structures

of MEC-4 and UNC-8 resemble an upright forearm and a

clenched hand (Figure 1). The forearm is built by two

transmembrane helices, which span about 40 Å. The N-terminal

and the C-terminal regions of the protein are cytoplasmic and

their structure has not been determined by crystallography. The

N-terminal region of MEC-4 was previously modeled by

homology to the protease procaricain [13]. The hand with the

wrist, the palm, the thumb and the fingers constitute the

extracellular domains. A b-sheet in the palm spans nearly the

entire height (,55 Å) of the extracellular domain. This b-sheet

connects to both transmembrane helices and also to the thumb

domain, which is composed of three helices and was suggested to

play a role in the transduction of conformational changes in

ASIC1 [9].

Results and Discussion

Homology-based modeling of MEC-4
Subunits A, B and C of the 2QTS crystal structure include 417,

420 and 418 visible amino acid residues respectively, while the

3HGC crystal structure comprises 406 residues [8,9]. The

corresponding segment of MEC-4 comprises 633 residues for

subunit A. Sequence homology based on structural alignment for all

residues is 16.4% (104/633) identity and 32% similarity. Most of the

residues which have no counterpart in the alignment (Figure 2) are

confined in two blocks of sequence (termed NC1 and NC2 herein;

depicted as gaps in Figure 2), which correspond to structural

elements in the area of the fingertips of the models (Figure 1).

Homology between MEC-4 and 2QTS rises to 25.3% identity and

49.5% similarity by excluding the NC1 and NC2 sequence blocks.

The 14 cysteines which participate in intramolecular disulphide

bridges are at the same positions in both proteins.

Figure 1. Superposition of the four subunits of MEC-4 modeled
on the 3 subunits of the crystal structure of the closed acid
sensing ion channel of chicken (PDB ID: 2QTS) and on the
minimal function channel (PDB ID: 3HGC). Colors denote the
model confidence factor of the SWISS-MODEL server; dark blue regions
denote high confidence, green to red gradually lower reliability. Lower
reliability is assigned if the template residues (in A, B and C of 2QTS and
3HGC) differ from one another or to sparse loops incorporated from
other structures. The arrow marks the position of e49 in the modeled
UNC-8 subunits (not shown). NC1 and NC2 denote the position of two
blocks of sequence in MEC-4 which have no counterpart in the
alignment and therefore are not modeled.
doi:10.1371/journal.pone.0012814.g001

DEG/ENaC Ion Channel Modeling
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Glutamic acid is the most abundant residue through the NC1

and in the first part of the NC2 block. Glutamic acid residues are

statistically found on the surface of proteins and are solvent

exposed [14]. A homology search [15] with the sequence of NC1

(54 residues) against the protein database (PDB; http://www.

wwpdb.org/) revealed 35% identity and 53% similarity with a

region of 45 residues in histone H4. The structure of the

homologous region comprises a 14-residue loopy region, which

adopts different conformations in the two crystallographic studies

available (1KX5 chain B and 1EQZ chain D). The remaining 31

residues are part of the first helix-turn-helix motif of histone H4,

which is identical in all H4-studies. One striking feature of NC2

(169 residues) is the large number (10) of cysteine residues in the

N-terminal part of the sequence. A homology search of the

sequence against the protein database revealed limited homology

(23% identity, 43% similarity), over a length of 46 residues without

insertions or deletions to the Herpes virus entry mediator (PDB

IDs: 1JMA and 2AW2). These structures form a two domain rod,

are classified as all beta-stranded and posses 8 intramolecular

disulphide bonds. If the N-terminal part of NC2 in MEC-4 would

adopt a similar conformation, three disulphide bonds would be

formed with minimal conformational changes. Similar to the

thumb region, these disulphide bonds might contribute to the

rigidity of this region. The results of both similarity searches were

not considered sufficient enough to model NC1 and NC2. To

avoid gaps in the model of MEC-4, short sequences from both

sides (N- and C-terminal) of both NC1 and NC2 have been

modeled to span the distance between the well aligned residues.

The sequence of MEC-4 used in the alignment and the model

comprises 432 residues for subunit A.

Four, slightly different subunits were modeled, reflecting the

differences in the four subunits. By superimposing these four

subunits, one can detect structurally conserved and flexible parts in

the models (Figure 1). The palm region, several helices in the

finger region and the thumb superimpose extensively. However,

there are other parts of the structure, where there are significant

differences between the four subunits (loops and turns, mainly in

the finger region). In addition, the orientation of the two

transmembrane helices, relative to the ‘hand’ differs in the four

subunits. Rigidity in the crystal structure of ASIC1 is imposed by

the extensive b-sheet and the 7 disulphide bonds. This rigidity is

maintained in the degenerin models, assuming that they possess

the same structural skeleton built by analogous secondary structure

elements.

Homology-based modeling of UNC-8
A segment of 594 amino acid residues in UNC-8 corresponds to

the sequence of 417 residues of 2QTS subunit A. Sequence

homology based on structural alignment for these residues is, 17%

identity and 30.5% similarity. Low similarity is found in the

fingertip region, and particularly in the sequence of the second

helix in the structure, which does not align with the sequence of

Figure 2. Structural alignment used for modeling of MEC-4 and UNC-8. MEC-4_A, MEC-4_B, MEC-4_C, MEC-4_H and UNC-8_A, UNC-8_B,
UNC-8_C, UNC-8_H were treated independently from one another. Each subunit is modeled to the superimposed subunits of 2QTS or 3HGC,
respectively. Secondary structural elements are color-coded (red: helices, blue: b-strands). Asterisks below the sequences denote identical, and dots
similar residues. Amino acid substitutions corresponding to mutant alleles are depicted in bold and are underlined, for specifics see Table 1. Solid
lines above the alignment denote parts of the modeled hand (turquoise: forearm, light blue: fingers, yellow: thumb).
doi:10.1371/journal.pone.0012814.g002
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UNC-8. For this reason, 41 residues (ELL…KAN; Figure 2) of

2QTS were left out of the alignment with UNC-8. Thus, one block

of 209 residues in UNC-8 remains with no counterpart in 2QTS.

A homology search against the PDB database resulted in no

significant alignment without extensive gaps for this block of

sequence. Limited homology with chain H of mammalian

cytochrome BC1 was detected (37% identity and 56% similarity

for 37 residues with one gap). The corresponding structural

element is mostly helical and was not considered for modeling

purposes. Overall homology between UNC-8 and 2QTS rises to

26.2% identity and 47% similarity without the 209 residues. To

avoid gaps in the model of UNC-8, short sequences from both

sides (5 N- and 6 C-terminal) have been modeled to span the

distance between well aligned residues. The sequence of UNC-8

used in the alignment and the model comprises 396 residues for

subunit A. In the UNC-8 model, the 7 disulphide bonds are also

preserved, with 5 of them located in the thumb region.

Ion channel mutations
Numerous mutant alleles, which affect ion channel function

have been isolated in genetic screens for altered mechanosensory

and locomotion phenotypes (Table 1; [5]). The structural impact

of these alleles can be examined in the context of the available

models. The three mec-4 alleles which are located in the palm

(u342 (G228S), u242(ts) (G234E) and u209 (S237F), see Table 1)

impose severe distortions in the geometry and hydrogen bonding

pattern in the beta sheet due to stereochemical hindrance of the

large sidechains.

Table 1. Ion channel mutants.

Allele Amino acid substitution Phenotype Position in the model Reference

MEC-4

u335 R5Stop Touch insensitivity TMI [27]

u45(ts) G14E Weak touch insensitivity TMI [27]

u316, e1339 G79E Touch insensitivity Finger [27]

u89 E139K Touch insensitivity Finger [27]

u342 G228S Touch insensitivity Palm [27]

u242(ts) G234E Touch insensitivity Palm [27]

u209 S237F Touch insensitivity Palm [27]

e1601, u273, u128, u340 C290V Touch insensitivity Thumb [27]

u221 G293E Touch insensitivity Thumb [27]

u315 D294N Touch insensitivity Thumb [27]

bz149 R296C Touch insensitivity Thumb [28]

bz183 R314K Suppressor of mec-4(u231) necrosis Thumb [28]

bz195 S330F Suppressor of mec-4(u231) necrosis Thumb [28]

bz94 P338L Suppressor of mec-4(u231) necrosis Thumb [28]

bz104 P350L Suppressor of mec-4(u231) necrosis – [28]

bz112 W353Stop Suppressor of mec-4(u231) necrosis – [28]

bz150, u72, u441 Q359Stop Suppressor of mec-4(u231) necrosis – [28]

bz159 T396I Suppressor of mec-4(u231) necrosis – [28]

u231, u56 A408V Neurodegeneration, necrosis TMII [20]

bz173 G411E Suppressor of mec-4(u231) necrosis TMII [28]

u2 G412D Suppressor of mec-4(u231) necrosis TMII [28]

bz11 G412S Suppressor of mec-4(u231) necrosis TMII [28]

bz165 G415D Suppressor of mec-4(u231) necrosis TMII [28]

u260 W417Stop Touch insensitivity TMII [27]

bz139 C418Y Suppressor of mec-4(u231) necrosis TMII [28]

e1789, u35 S421F Touch insensitivity TMII [29]

bz101 L423F Suppressor of mec-4(u231) necrosis TMII [28]

bz184, u246, u238 T424I Touch insensitivity TMII [29]

u29 E427K Touch insensitivity TMII [29]

bz8 L433E Suppressor of mec-4(u231) necrosis TMII [28]

UNC-8

n1193 E232K Interrupted locomotion Thumb This study

e49 A266T Uncoordinated locomotion Thumb [7]

lb82 T344I Abnormal locomotion – [7]

The molecular characteristics, the associated mutant phenotypes and the localization of amino-acid substitutions on the model are indicated. TM: Transmembrane.
doi:10.1371/journal.pone.0012814.t001
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Both Val and Ala residues are abundant in TM-helices [16,17].

The mec-4 allele u231 (A408V; also referred to as A713V), encodes

a constitutively open ion channel. A408 is located in the second

TM-helix. It has been found that the hydrophobic moment

[18,19] is not affected in direction or magnitude by this allele.

Substitutions for Gly and Ser at this position have no effect in the

function of MEC-4 [2,20]. Furthermore, Gly and Ser are found in

other members of the degenerin family at this position. The model

of trimeric MEC-4, modeled on 2QTS shows that Ala408 is facing

the first TM-helix of another subunit (Figure 3a). Based on this

trimer model, there is no evidence that more bulky sidechains like

Val could interfere with the close contact of the helices, as there

seems to be enough space to accommodate even bulkier

sidechains. The packing moment [21] of the helices is only

marginally changed.

The extracellular domain (residues 34–400) of both crystal

structures is essentially the same (the RMS deviation for the

backbone atoms of all residues, including loops and turns, is

1.65 Å). Both crystal structures differ in the bending angle between

the transmembrane helices and the extracellular domain as well as

in the arrangement of the transmembrane helices. In 2QTS both

transmembrane helices of each subunit pack to form, together with

the other subunits, a circle in alternating fashion. The circle built

by the three TM-I alone has a marginally larger radius than the

circle of the TM-IIs alone. This is reflected in the model of MEC-4

(Figure 3a).

However, a different situation emerges in the case of 3HGC and

the trimer model derived from this crystal structure. Here, in the

protein derived from the minimal function construct, the TM-II

helices build the core and are flanked by TM-Is (Figure 3b).

Ala408 is now facing another TM-II and the space available for

bulkier sidechains is more restricted. Nevertheless, substituting Ala

408 by Val does not provoke close contacts in this region

(Figure 3b). The only close backbone contact (3.5 Å) is with the

C = O group of Asn405 of the same chain, which is within the

acceptable limit. Other close contacts with the adjacent subunit

sidechains Asp409 and Gln413 are avoidable by small conforma-

tional changes in these side-chains. Enough space appears to be

available, even for bulkier sidechains than Val, without forcing the

adjacent subunits to move apart.

The conformational space available for a Val backbone is more

restricted in comparison to Ala or Gly. A conformational change

at position 408 in the MEC-4 model would let the carbonyl group

of residue 408 tip out of the helix axis and thus make this carbonyl

group available for coordinating a cation. Such coordination of the

corresponding residue (Gly 432) was observed in the structure of

ASIC-mfc, when crystals were soaked with Cs+ containing solution

[8]. Distortions in helix geometry and in the hydrogen bonding

Figure 3. Stereo views of the environment of the dominant, gain-of-function mec-4 allele u231 (here A408V). The sidechain of A408 was
substituted by Val and is shown in red. I and II denote transmembrane helices I and II. a: Yellow, blue and green denote the different subunits of mec-
4 modeled to the three different subunits of the crystal structure 2QTS. b: Yellow, blue and green denote the crystallographic equivalent subunits of
the trimer derived by application of crystallographic symmetry. The subunit was modeled to the subunit of 3HGC. The same helical segments are
shown as in Figure 3a.
doi:10.1371/journal.pone.0012814.g003

DEG/ENaC Ion Channel Modeling

PLoS ONE | www.plosone.org 5 September 2010 | Volume 5 | Issue 9 | e12814



patterns in MEC-4 could be compensated by conformational

changes of other Glycines in this Gly-rich region. We propose that

the A408V allele restricts the position of the carbonyl oxygen at

position 408 so as to make coordination of a cation impossible,

thus leading to a permanently open ion channel. Other mutant

alleles [G411D (u2), G411S (bz173), G412E (bz11) and G415D

(bz165)] change sidechains 3, 4 and 7 residues downstream of

A408V (u231). In the proposed models these residues are placed

on the same side of the helix as A408, one (G411 and G412) and

two turns (G415) towards the cytoplasm. These residues are

implicated in gating the channel and certain mutations may alter

selectivity [22,23]. Furthermore, all 4 alleles suppress neurode-

generation caused by A408V. These 4 alleles substitute Gly by

residues with carboxyl or hydroxyl group(s) in the sidechain. The

backbone conformation of the modeled 408 residues lies strictly in

the helical region, as it is in ASIC-mfc. We hypothesize that if

Val408 is not allowed to coordinate cations with its carbonyl group

due to conformational restrictions of the backbone, the long polar

sidechains of the second-site alleles overtake this coordination in

the double-mutant channels. The free passage of ions through a

permanently open ion channel may be slowed down and/or

modulated by these polar residues which protrude from the three

subunits inside the ion channel.

The unc-8(e49) allele is semi dominant gain of function allele

(here A266T) which results in mild uncoordination of the animals,

without neuronal swelling. This residue is situated at the thumb tip

and not in a flexible loop, at the beginning of a helix, in the

models. The direction of the sidechain points towards the clenched

fingertips (Figure 4). Due to limited homology between UNC-8

and 2QTS in this region, it was not modeled except 11 amino acid

residues within the two boundaries of this region. Changing

Ala266 to the more bulky Thr will sterically influence the

neighborhood of the fingertip residues. This substitution might

also cause the threonine sidechain to form hydrogen bond(s) with

the fingertip and therefore interfere with proper function of the

channel.

Homology models of MEC-4 and UNC-8 were obtained based

on both available crystallographic structures of the closed chicken

acid sensing ion channel of (PDB IDs: 2QTS, 3HGC). The fact

that sequences of MEC-4 and 2QTS/3HGC share only 16%

identity and consist of 634 and 417/406 residues respectively,

coupled with the limited capacity of contemporary modeling

software to properly handle insertions and deletions in amino acid

sequences render modeling attempts particularly challenging for

this class of proteins. We performed knowledge-based modeling,

on the assumption that key secondary structural elements, such as

a-helices, the long b-sheet and the 7 disulphide bridges are also

maintained in the modeled degenerin subunits. The additional

stretches of residues, which lie in turns, flexible loops or the larger

inserts, form secondary structural elements that were not modeled

but may nevertheless be important for function.

Given that MEC-4 and UNC-8 form extensive connections,

both with the extracellular matrix and the intracellular environ-

ment, structural models should be particularly useful for

identifying critical residues involved in structural stability and

predicting protein-protein interactions. Functionally important

regions of a protein tend to be more highly conserved and thus

more accurately modeled. Identification of potential protein

partners might reveal shared interactions among the DEG/ENaC

family members. In addition, homology modeling can also be used

to identify subtle differences among various members of the DEG/

ENaC family, which share high sequence similarity. Thus, special

structural elements may be linked to functional features. Our

models provide a tool for immediate correlation between genotype

and phenotype. Modeling of MEC-4 structural alterations induced

by the u231 allele, provides insight about the mechanism of

degeneration triggered by this toxic channel derivative. Combined

with molecular dynamics simulations, homology models can also

generate hypotheses about the kinetics and dynamics of members

of DEG/ENaC family, pertaining ion selectivity. These models

can also guide mutagenesis experiments, or hypotheses about

structure-function relationships. In C. elegans, members of the

DEG/ENaC family have diverse expression patterns and are

present essentially in all tissues. Directed mutagenesis of homology

based models will provide a tool for provoking ion imbalance and

consequently degeneration in selected tissues. Rational designing

of agonists and antagonists will provide tools for temporal control

of degeneration. Given that DEG/ENaC variants are potent

initiators of necrotic cell death and neurodegeneration, elucidation

of the key structural features linked to this capacity will help

correlate genotypic and phenotypic mutation data and guide

experimental design.

Structural studies are clearly required to test the three-

dimensional MEC-4 and UNC-8 models. Such studies are not

trivial however, because of inherent difficulties in efficiently

expressing degenerins using a heterologous expression system.

An additional difficulty arises from the transmembrane nature of

these proteins. Our models provide a first approximation to the

structure of functionally important domains in these metazoan

mechanosensory ion channel subunits, and remains to be tested

experimentally.

Methods

The three subunits of the first trimer of 2QTS (subunits A, B

and C) have been superimposed: two subunits to the third in

alternating order. The sequences of MEC-4 and UNC-8 were

Figure 4. The environment (within 9 Å) of the semi-dominant
gain-of-function unc-8 allele e49, here A266T, in the 4
superimposed models of a subunit of UNC-8. For clarity, only
ribbons are drawn. Yellow, blue, green and orange denote the different
modeled subunits of unc-8. The sidechain of A266 was substituted in
the picture by T266 and is shown in red.
doi:10.1371/journal.pone.0012814.g004

DEG/ENaC Ion Channel Modeling

PLoS ONE | www.plosone.org 6 September 2010 | Volume 5 | Issue 9 | e12814



both aligned three times (both to the superimposed subunits ABC,

BCA and CAB of 2QTS) in the Swiss-PDB Viewer [24]. For

subunit A, B and C in MEC-4, 432, 435 and 433 residues were

modeled reflecting the slightly different lengths at the N-and C-

terminals of the crystals structure’s subunits (417, 420 and 418

residues). The crystal structure of the minimal function channel

3HGC is described by one subunit in the asymmetric unit of a

trigonal space group. This structure comprises 406 visible residues

to which 421 residues of MEC-4 were aligned in the same way as

to the subunits of 2QTS. The sequences of UNC-8 comprise 396,

399 and 397 residues modeled to the 3 superimposed subunits of

2QTS and 385 residues modeled to the subunit of 3HGC. The

structural alignments of the 8 subunits (4 MEC-4 and 4 UNC-8)

were aligned in alternating order to the superimposed chains of

2QTS and the alignments are submitted separately to the SWISS-

MODEL server (http://swissmodel.expasy.org/). Preliminary

models with poor geometry were obtained. These models were

manually adjusted in order to optimize the geometry of certain

regions. The models were energy minimized with the program

CNS (in vacuo, 1200 cycles of conjugate gradient minimization with

hydrogen bond restraints, non-bonded cutoff 13 Å) [25]. The cis-

prolines observed in 2QTS were also maintained in the models.

Two additional cis-prolines were introduced in the MEC-4 models

A and B and one in C, whereas only one additional cis-proline was

introduced in the three UNC-8 models. In 3HGC, only one cis-

peptide bond containing proline and three cis-peptides with other

residues were determined. Two of these non-proline cis-bonds

were maintained in the models of MEC-4, and the same additional

cis-proline residues were introduced as in the subunits modeled to

the high resolution structure 2QTS.

In the structural alignment used for modeling of UNC-8 to

3HGC, the only non-proline cis-peptide in 3HGC which aligns to

the sequence of UNC-8, aligns to a proline in the UNC-8

sequence and was maintained. The C-terminal cis-proline was also

modeled in UNC-8 like a third cis-proline, as in all other models at

the same region in the alignment. The geometry of the final

models was analyzed using the program PROCHECK [26]. The

trimer of MEC-4 modeled to 2QTS was obtained by placing the

three final subunits on the trimeric crystal structure (A, B and C) of

2QTS. The trimer modeled to 3HGC was obtained by placing the

subunit in the unit cell of 3HGC and applying space group

symmetry. Both trimeric models were energy minimized employ-

ing the same conditions as in the subunit energy minimizations of

the individual subunits. This was considered necessary in order to

remove some interchain contacts. The models are accessible at

http://elegans.imbb.forth.gr/models/.
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