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The nervous system becomes increasingly vulnerable to insults and prone to dysfunction
during aging. Age-related decline of neuronal function is manifested by the late onset
of many neurodegenerative disorders, as well as by reduced signaling and processing
capacity of individual neuron populations. Recent findings indicate that impairment of Ca2+
homeostasis underlies the increased susceptibility of neurons to damage, associated with
the aging process. However, the impact of aging on Ca2+ homeostasis in neurons remains
largely unknown. Here, we survey the molecular mechanisms that mediate neuronal Ca2+
homeostasis and discuss the impact of aging on their efficacy. To address the question of
how aging impinges on Ca2+ homeostasis, we consider potential nodes through which
mechanisms regulating Ca2+ levels interface with molecular pathways known to influence
the process of aging and senescent decline. Delineation of this crosstalk would facilitate the
development of interventions aiming to fortify neurons against age-associated functional
deterioration and death by augmenting Ca2+ homeostasis.
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INTRODUCTION
Fluctuations in intracellular calcium concentration act as signals
for a variety of processes in neurons. Most notably, Ca2+ is the
major trigger of neurotransmitter release, a process that has been
thoroughly investigated over the past decades (Neher and Sakaba,
2008). Moreover, it has also become clear that Ca2+ is essential for
a variety of other neuronal functions, including neuronal excitabil-
ity (Marty and Zimmerberg, 1989), integration of electrical signals
(Llinas, 1988; Marty and Zimmerberg, 1989), synaptic plastic-
ity (Malenka et al., 1989), gene expression (Szekely et al., 1990),
metabolism (McCormack and Denton, 1990), and programmed
cell death (Chalfie and Wolinsky, 1990). Given its central role in
processes that are fundamental to the excitable nature of neurons,
Ca2+ homeostasis is tightly regulated in these cells (see Table 1
for a summary of the key effectors of Ca2+ homeostasis, in neu-
rons). Here, we briefly overview the main mechanisms neurons
use in order to achieve an intricate regulation of the intracellular
concentration of Ca2+. In addition, we discuss the accumulating
evidence on the potential role of deregulated Ca2+ homeostasis in
aging and disease of the nervous system.

MECHANISMS OF NEURONAL CALCIUM HOMEOSTASIS
RELEVANT TO AGING AND DEGENERATION
Ca2+ INFLUX THROUGH THE PLASMA MEMBRANE
Plasma membrane Ca2+ channels allow the passive influx of cal-
cium ions down their electrochemical gradient. These channels
are categorized into two major groups depending on the mech-
anism controlling their transition between the open and closed
conformations: channels gated by voltage (also known as voltage-
operated Ca2+ channels, VOCC), and channels gated by ligand
binding, in neurons usually L-glutamate (Figure 1; Table 1).

Voltage-gated Ca2+ channels are multi-protein complexes
comprising several different subunits: α1, α2δ, β1−4, and γ

(Takahashi and Catterall, 1987; Catterall et al., 1990). The α1 sub-
unit is the largest and it contains the conduction pore, the voltage
sensors, and gating apparatus, and most of the known sites of
channel regulation by second messengers, drugs, and toxins. The
α1 subunits are associated with distinct auxiliary protein subunits
(Catterall et al., 1990): the intracellular β subunit, the transmem-
brane, disulfide-linked α2δ subunit complex, and the γ subunit,
a component of skeletal muscle Ca2+ channels also expressed in
heart and brain having four transmembrane segments. Although
these auxiliary subunits modulate the functional properties of the
Ca2+ channel complex, the pharmacological and physiological
diversity of Ca2+ channels arises primarily from the existence of
multiple α1 subunits. These are encoded by 10 distinct genes
in mammals, further divided into three subfamilies based on
sequence similarity (Catterall et al., 1990; Snutch and Reiner, 1992;
Ertel et al., 2000). Division of Ca2+ channels into these three sub-
families is phylogenetically ancient, as single representatives of
each are found in the Caenorhabditis elegans genome. Recently,
calcium homeostasis modulator 1 (CALHM1), a glycosylated
membrane protein expressed throughout the brain, was identi-
fied as the pore-forming subunit of a unique plasma membrane
Ca2+-permeable voltage-gated ion channel (Ma et al., 2012).

Based on the characteristics of channel composition, distinct
classes of Ca2+ currents have been described (Tsien et al., 1988).
In summary, N-type, P/Q-type, and R-type Ca2+ currents are
induced upon strong depolarization (Tsien et al., 1991) and are
pharmacologically blocked by specific toxins derived from snail
and spider venoms (Miljanich and Ramachandran, 1995). N-type
and P/Q-type Ca2+ currents are observed primarily in neurons
where they initiate neurotransmission at most fast conventional
synapses (Catterall et al., 1990; Olivera et al., 1994; Dunlap et al.,
1995). More specifically, the CaV2 subfamily members (CaV2.1,
CaV2.2, and CaV2.3) conduct P/Q-type, N-type, and R-type
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Table 1 | Summary of different Ca2+ channels, buffers and sensors, their subcellular localization and function.

Sub-cellular localization Function

Channels

Voltage-gated Ca2+ channels Plasma membrane Influx of Ca2+ into the cell

NMDA receptor

PMCA, ATP driven Ca2+ pump Efflux of Ca2+ from the cell

NCX, “Na+/Ca2+ exchanger”

SERCA 1, 2a, 2b, 3 ER and Golgi Influx of Ca2+ into the ER or Golgi

Inositol 3-phosphate (InsP3) receptors ER Efflux of Ca2+ from the ER

Ryanodine receptors (RyRs)

NAADP receptors

polycystin-2 channels

presenilin 1 and 2

SPCA 1a, 1b, 1c, 1d, 2 Golgi Influx of Ca2+ into the Golgi

Ca2+ uniporter Mitochondria Influx of Ca2+ into mitochondria

NCX mitochondrial Na+/Ca2+ exchanger Efflux of Ca2+ from mitochondria

mPTP

Buffers

Calreticulin ER Reversible sequestering of Ca2+

Calsequestrin

Endoplasmin

BiP/grp78

Reticulocalbin

CREC family proteins

Calretinin Cytosol, mainly CNS GABAergic

interneurons

Calbindin

Parvalbumin

Nucleo-calbindin Golgi

Glycerophosphate dehydrogenase Mitochondrial

Aralar ARE

Sensors

Calmodulin Cytosol Translation of graded Ca2+ concentration changes into graded

signaling responses via interaction with Ca2+ sensitive enzymes

Recoverins Cytosol, photoreceptors

Guanylyl cyclase activating protein 1 (GCAP1)

Frequenins Cytosol, CNS neurons

Visinin-like proteins

Kv channel interacting proteins (KChIPs)

Ca2+ currents, respectively (Catterall et al., 1990; Snutch and
Reiner, 1992; Olivera et al., 1994; Ertel et al., 2000). Ca2+ entering
neurons through the CaV2.1 and CaV2.2 channels is primarily
responsible for initiating synaptic transmission at conventional
fast synapses (Olivera et al., 1994; Dunlap et al., 1995). CaV2.2
channels are most prevalent at synapses formed by neurons of
the peripheral nervous system. In contrast, CaV2.1 channels
play a major role at most synapses formed by neurons of the

mammalian central nervous system. However, in some central
synapses, including a subset of inhibitory interneurons of the hip-
pocampus (Poncer et al., 1997), CaV2.2 channels are predominant
in neurotransmitter release.

Ca2+ entry through a voltage-gated Ca2+ channel initi-
ates neurotransmission by triggering vesicular release (Stanley,
1993). Ca2+-triggered synaptic vesicle exocytosis depends on the
assembly of the SNARE complex, in which the vesicle-associated
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FIGURE 1 | Schematic representation of the main Ca2+ homeostatic

machinery components in neurons. Individual, key components of calcium
homeostatic mechanisms discussed in the text are shown. Arrows indicate
direction of ion flux. ER, endoplasmic reticulum; IP3-R, inositol 3-phosphate

receptor; NCX, sodium calcium exchanger; NMDA, N -methyl-D-aspartate;
PMCA, plasma membrane Ca2+ ATPase; RyR, ryanodine receptor; SERCA,
sarco(endo)plasmic reticulum Ca2+ ATPase; SPCA, secretory-pathway
Ca2+-ATPase; VOCC, voltage-operated calcium channel.

v-SNARE protein synaptobrevin (VAMP) interacts with two
plasma membrane-associated t-SNARE proteins, SNAP-25 and
syntaxin-1 (Sollner et al., 1993; Bajjalieh and Scheller, 1995; Sud-
hof, 1995, 2004). Maturation into a release-ready SNARE complex
requires synaptotagmin, an integral Ca2+-binding protein of
the synaptic vesicle membrane that provides Ca2+-dependent
regulation of the fusion machinery. Ca2+ influx into the presy-
naptic terminal binds to the Ca2+ sensor, synaptotagmin, and
the SNARE complex changes conformation from a trans to a cis
state, resulting in the fusion of apposing membranes and the
release of neurotransmitter. Neurotransmitter release occurs in
two phases: a fast synchronous (phasic) component and a slow
asynchronous (tonic) component (Hubbard, 1963; Barrett and
Stevens, 1972; Rahamimoff and Yaari, 1973; Goda and Stevens,
1994; Atluri and Regehr, 1998). Both forms of transmission are
Ca2+ dependent. Synchronous release driven by the precisely
timed presynaptic Ca2+ current results in a large, fast postsy-
naptic response (Llinas et al., 1981; Sabatini and Regehr, 1996),
whereas the slower asynchronous component, resulting from
residual Ca2+ remaining in the terminal after an action poten-
tial, provides a basal or tonic level of neurotransmitter release at
many synapses (Atluri and Regehr, 1998; Lu and Trussell, 2000;
Hagler and Goda, 2001).

In addition to voltage-gated channels, a number of Ca2+ chan-
nels on the plasma membrane of neurons are activated by the
interaction of ligands with their own plasma membrane recep-
tors. The most prominent such ligand in the nervous system
is L-glutamate, by far the most widespread excitatory trans-
mitter in the vertebrate central nervous system. L-glutamate
activates two general classes of receptors, the “ionotropic” recep-
tors, which are ionic channels, and the G-protein coupled
“metabotropic”receptors. Of these, the ionotropic receptors medi-
ate the direct penetration of Ca2+ into the cell. Three forms of
ionotropic receptors have been characterized and named after
their most widely used agonists. These are the kainate (KA)

receptors, the α-amino-3-hydroxy-5-methyl-4-isoxazole propi-
onate (AMPA) receptors, and the N-methyl-D-aspartate (NMDA)
receptors. The channels formed by AMPA and KA receptors are
primarily permeable to Na+ and K+ and exhibit a rather low con-
ductance to Ca2+ (Mayer and Westbrook, 1987). By contrast, the
NMDA receptors have a considerably higher conductance and are
permeable to Na+ and Ca2+ (MacDermott et al., 1986). These
receptors do not mediate rapid synaptic transmission, their con-
tribution being primarily to the slow component of excitatory
postsynaptic currents. At the resting plasma membrane potential
they are powerfully inhibited by Mg2+, whose block is reversed by
plasma membrane depolarization (Nowak et al., 1984). Thus, the
rapid increase of membrane depolarization following the activa-
tion of KA/AMPA receptors by glutamate released into the synaptic
cleft reduces the inhibition of NMDA receptors by Mg2+. There-
fore, the excitatory postsynaptic potential produced by activation
of an NMDA receptor highly increases the concentration of Ca2+
in the cell. The Ca2+ in turn functions as a key second messenger
in various signaling pathways. The ability of the NMDA recep-
tor to act as a “coincidence receptor,” requiring the concomitant
presence of its ligand and membrane depolarization in order to
be activated, explains many aspects of its functional involvement
in long-term potentiation (LTP) and synaptic plasticity, a process
associated with memory and learning as discussed later.

EFFLUX OF CALCIUM THROUGH THE PLASMA MEMBRANE
Two major plasma membrane mechanisms are responsible for the
extrusion of Ca2+ from cells (Figure 1; Table 1). One is the ATP-
driven plasma membrane Ca2+ pump (PMCA) and the other is
the Na+/Ca2+ exchanger (NCX), a complex similar to that dis-
cussed later for the removal of Ca2+ from the mitochondrial
matrix into the cytoplasm (Baker and Allen, 1984; Carafoli and
Longoni, 1987; Blaustein, 1988). Unlike in mitochondria, plasma
membrane NCX has the inherent ability to move Ca2+ into or
out of the cell depending on the prevailing conditions. When the
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system is acting to remove Ca2+, energy is supplied by the electro-
chemical gradient that ultimately results from the activity of the
plasma membrane Na+/K+ ATPase (Na+ pump).

Plasma membrane Ca2+ pump has a higher affinity for Ca2+
(Kd = 100 nM) but a very slow turnover, whereas NCX has a
much lower affinity (Kd = 1000 nM) but a higher turnover. Both
types of transporters are co-expressed in neurons and in astrocytes
(DiPolo and Beauge, 1983; Juhaszova et al., 2000). However, the
precise role that each plays in removing excess Ca2+ loads under
different physiological and pathophysiological conditions remains
rather unclear. A major difference is the fact that they exhibit dis-
tinct subcellular localization patterns. In particular, some if not
all of PMCA found in neurons seems to be localized very close to
the neurotransmitter release sites (active zone) of the presynaptic
terminals, whereas NCX is excluded from these sites and present
in a more dispersed fashion on the rest of the neuron (Juhaszova
et al., 2000; Blaustein et al., 2002). Therefore, the PMCA may help
keep active zone Ca2+ very low, and function to re-prime the
neurotransmitter release mechanism following activity. NCX, on
the other hand, is believed to efflux Ca2+ that has diffused away
from the active zone and perhaps been temporarily sequestered
by the endoplasmic reticulum (ER). Moreover, the discovery of
a multitude of PMCA isoforms and alternative splice variants
(Strehler and Treiman, 2004; Strehler et al., 2007), as well as recent
results on PMCA “knockout” mice and PMCA mutants (Prasad
et al., 2007), show that at least some PMCAs play a more specific
role in local Ca2+ handling. In addition, a growing number of
specific PMCA-interacting proteins have been identified with reg-
ulatory, targeting, and signaling functions. These findings support
a new paradigm, whereby PMCAs are not only responsible for
global Ca2+ homeostasis but are dynamic participants in spatially
defined Ca2+ signaling. The main regulator of PMCA function is
Ca2+ calmodulin (Ca2+-CaM; Werth et al., 1996). In the absence
of CaM, the pumps are autoinhibited by a mechanism that involves
the binding of their C-terminal tail to the two major intracellular
loops. Activation requires binding of Ca2+-CaM to the C-terminal
tail and a conformational change that displaces the autoinhibitory
tail from the major catalytic domain. Release of autoinhibition
may be facilitated by means other than CaM binding, includ-
ing by acidic phospholipids, protein kinase A- or C-mediated
phosphorylation of specific (Ser/Thr) residues in the C-terminal
tail (Werth et al., 1996), partial proteolytic cleavage of the tail
(e.g., by calpain or caspases), or dimerization via the C-terminal
tail (for a detailed review see Di Leva et al., 2008). Different
PMCA isoforms show significant differences in their regulation
by kinases and CaM. Interestingly, loss of PMCA function was
reported to lead to an increase in the levels of intracellular Ca2+,
causing apoptotic death of cerebellar and spinal cord neurons
(Kurnellas et al., 2007).

INTRACELLULAR CALCIUM HOMEOSTASIS IN NEURONS
Ca2+ homeostasis in the ER
The ER, a complex system of endomembranes, is present in all
neurons and extends from the nucleus to the soma, dendrites, and
dendritic spines, and down the axon to the presynaptic terminals.
Particularly relevant for neuronal function is the ability of the ER
to act as a dynamic Ca2+ store, able to actively accumulate Ca2+

and to release it in response to physiological stimulation. As such,
the ER contains a variety of channels, buffers, and sensors dedi-
cated to Ca2+ homeostasis (Figure 1; Table 1). In general, Ca2+
exits the ER through several types of Ca2+ release channels, such
as inositol 3-phosphate (InsP3) receptors, ryanodine receptors
(RyR), nicotinic acid adenine dinucleotide phosphate (NAADP)
receptors, and polycystin-2 channels [the relative of transient
receptor potential (TRP) proteins]. In neurons, the NAADP recep-
tors were reported to exist in brain microsome preparations (Bak
et al., 1999) and Ca2+ release from these channels was described
in neurons from the buccal ganglion of aplysia (Chameau et al.,
2001), yet their relevance in vertebrate neurons remains unclear.
Regarding the TRPs, although they are expressed by neurons, there
is so far no evidence for their involvement in Ca2+ homeosta-
sis in these cells. Therefore, in neurons, Ca2+ exit from the ER
occurs mainly through the inositol 3-phosphate receptors (IP3-
Rs) and the Ca2+ activated RyR, both forming large tetrameric
channel proteins. Both receptor families are comprised of multiple
members that display distribution patterns that are both tempo-
rally and spatially regulated in neurons. For example, there are
three RyRs, all of which can be activated by Ca2+ on the cytoso-
lic side with differential sensitivities (RyR1 > RyR2 > RyR3).
All three members have been detected in neurons, with distinct
patterns that change during development and postnatal growth.
For example, postnatally, RyR1 is highly expressed in cerebellar
Purkinje cells, RyR3 in the hippocampus, striatum, and dien-
cephalon, while many neurons co-express more than one RyR
isoform (Hakamata et al., 1992; Lai et al., 1992; Furuichi et al.,
1994; for review also see Berridge, 1998; Hertle and Yeckel, 2007).
Regarding their sub-cellular localization, RyRs have been seen
in all parts of neurons, including the soma, axons, dendrites,
and even the spine apparatus of excitatory neurons. Similarly,
there are three InsP3R isoforms with different sensitivities to
Ca2+, and further diversity may arise from alternative splicing
of InsP3R1. InsP3R1 is the main isoform in neurons in the brain,
while InsP3R3 is mainly found in the spinal cord and in glial cells
(Berridge, 1998).

Propagating Ca2+ waves is the most dramatic expression of
Ca2+ release from the ER, reflecting the Ca2+-induced Ca2+
release (CICR) mode, where elevated cytoplasmic Ca2+ induces
further Ca2+ release. Ca2+ waves in neurons were described more
recently, after the notion had first been established using Xenopus
oocytes (Lechleiter et al., 1991; Parker and Ivorra, 1991). Given the
functional compartmentalization of neurons, Ca2+ waves take up
different properties depending on their spatial localization and
neuronal type diversity. For example, synaptically activated Ca2+
waves preferentially initiate at branch points of dendrites (Naka-
mura et al., 2002; Larkum et al., 2003; Fitzpatrick et al., 2009)
and are mediated by the IP3-Rs (Nakamura et al., 1999). Such
waves have been observed in pyramidal neurons of the rodent
CA1 and CA3 regions of the hippocampus (Miller et al., 1996;
Kapur et al., 2001), in layers 2 and 3 of the cortex (Larkum et al.,
2003; Hagenston et al., 2008) and principal neurons of the amyg-
dala (Power and Sah, 2008), all regions heavily involved in memory
and learning. Relevant to the cognitive decline and memory loss
associated with aging, synaptically induced Ca2+ waves are func-
tionally linked to synaptic plasticity, a process known to require a
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rise in the postsynaptic concentration of Ca2+. More specifically,
there are several cases where synaptically activated Ca2+ release
from stores was shown to induce LTP (Yeckel et al., 1999), though
it remains controversial as one study challenged this conclusion
(Mellor and Nicoll, 2001).

In addition to the channels discussed above, some studies have
suggested that presenilin 1 and 2, beyond constituting the pro-
teases in the γ-secretase complex, also function as Ca2+ leak
channels in the ER, either by themselves, or indirectly by increas-
ing the activity of IP3-Rs and RyRs (Pack-Chung et al., 2000). In
particular, presenilin 2 was shown to interact with sorcin, a cyto-
plasmic calcium-binding protein that modulates the activity of
RyRs (Pack-Chung et al., 2000). Interestingly, in some mutations
of presenilin 1 and 2 that are responsible for familial Alzheimer’s
disease, disruption of intracellular Ca2+ homeostasis by the ER is
the major measurable cellular consequence (Nelson et al., 2010),
as discussed later on.

Calcium uptake into the ER lumen results from the function of
Ca2+ pumps of the P-type sarco(endo)plasmic reticulum Ca2+
ATPase (SERCA) family. This family includes three members
(SERCA1–3), as well as two splice isoforms of SERCA2. While
SERCA2b is ubiquitously expressed, SERCA2a and SERCA3 are
found almost exclusively in cerebellar Purkinje neurons. Inhibition
of the SERCA pumps results in a relatively slow emptying of ER
Ca2+ stores, with Ca2+ exiting the ER through poorly described
pathways (Camello et al., 2002). Ca2+ buffering in the ER lumen is
achieved by specific Ca2+-binding proteins. In neurons, the most
abundant of these is calreticulin and calsequestrin, while some
others such as endoplasmin, BiP/grp78, and proteins of the CREC
family also participate in Ca2+ buffering. A main difference of ER
Ca2+ buffers is that, unlike their cytosolic counterparts, they have
a low affinity for Ca2+ to allow the maintenance of high intra-ER
Ca2+ levels.

Ca2+ homeostasis in the Golgi
Ca2+ uptake in the Golgi apparatus involves two groups of Ca2+
pumps: the well characterized SERCAs, discussed above, and
a less characterized group of ATPases that were described as
secretory-pathway Ca2+-ATPases (SPCAs; Shull, 2000; Figure 1;
Table 1). The SPCAs in addition supply the Golgi lumen with
Mn2+, which is needed for many enzymatic reactions in this
compartment. Mammalian SPCA was originally cloned from rat
using a probe derived from sequences of the ATP-binding site
of SERCA1 and SERCA2 (Gunteski-Hamblin et al., 1992). The
corresponding human gene (ATP2C1) was described by two inde-
pendent groups (Hu et al., 2000; Sudbrak et al., 2000). Alternative
processing of ATP2C1 results in four SPCA1 proteins with C-
termini differing in length and specific amino acid sequence
(Hu et al., 2000; Sudbrak et al., 2000; Fairclough et al., 2003),
SPCA1a, SPCA1b, SPCA1c, and SPCA1d. Ishikawa et al. (1998)
later described a second human SPCA isoform, named SPCA2.
Its human gene (ATP2C2) was independently described in 2005
by two groups (Vanoevelen et al., 2005; Xiang et al., 2005). The
widespread expression pattern of SPCA1 and the observation that
homozygous loss of a functional ATP2C1 gene do not seem to
be viable suggest that SPCA1 is a housekeeping enzyme. The
tissue and cellular expression of SPCA2 appears to be more

restricted than that of SPCA1, and based on mRNA data it is
expressed in the brain, among other tissues (Vanoevelen et al.,
2005; Xiang et al., 2005). It is now well established using a range
of different cell types that the endogenous SPCA1 is specifically
located in the Golgi compartment (Behne et al., 2003; Van Bae-
len et al., 2003; Reinhardt et al., 2004; Ramos-Castaneda et al.,
2005). The relative contribution of SERCAs and SPCAs to the
total uptake of Ca2+ into the Golgi apparatus seems to be cell-
type-dependent. The highest dependence on SPCAs occurs in
human keratinocytes (Callewaert et al., 2003). This finding is
important for explaining the physiopathology of the skin-related
Hailey–Hailey disease.

While the potentially specific roles of SPCAs in neurons are
poorly understood, our own recent findings (Kourtis et al., 2012)
suggest that SPCA1 is both necessary and sufficient in mediating
the neuroprotective function of heat preconditioning in a model of
heat stroke-induced neurodegeneration. Notably, this mechanism
is evolutionarily conserved as it is preserved from C. elegans to
mammals. This finding invites the speculation that SPCAs may
have a more general neuroprotective role, whose relevance to other
forms of neurodegeneration and aging remains to be examined.

Ca2+ homeostasis by mitochondria
Beyond their main role in the cell to produce NADH and ATP, it is
now well accepted that mitochondria also function as Ca2+ buffers
(Figure 1; Table 1). As proton pumping creates an inside-negative
membrane potential in mitochondria, Ca2+ tends to be drawn
into the mitochondrial matrix following its electrochemical gra-
dient. This influx is mainly achieved by the mitochondrial Ca2+
uniporter whose conductance is dependent on both intracellular
Ca2+ concentration and energy demand. At high cytosolic Ca2+
concentrations and low ATP/ADP ratio more Ca2+ is conducted,
whereas at low cytosolic Ca2+ concentration and high ATP/ADP
ratio less Ca2+ is conducted. Intricately enough, increasing mito-
chondrial Ca2+ concentration activates the enzymes of the Krebs
cycle, thus causing increased ATP production. As mitochondrial
Ca2+ buffering is more energy efficient compared to expelling
Ca2+ through the plasma membrane or into the ER, this mech-
anism is considered of high relevance for neurons in situations
when ATP and oxygen demands reach high levels, such as in the
case of repeated axon potentials (Contreras et al., 2010).

Calcium is expelled from the mitochondrial matrix into the
cytosol mainly by the mitochondrial sodium calcium exchanger
(NCX; three Na+ for one Ca2+), in conditions of low ATP
demand and oxygen consumption, or through a mitochondrial
proton/Ca2+ exchanger (two or more H+ per Ca2+). Indi-
rect experiments with isolated mitochondria under pathological
conditions or Ca2+ overload suggest an additional, higher conduc-
tance route, through the transient opening of the mitochondrial
permeability transition pore (mPTP). However, the physiologi-
cal relevance of mPTP in Ca2+ homeostasis remains controversial
and is not supported by genetic ablation studies (Ichas et al., 1997;
Baines et al., 2005). In addition to its contribution in disease, which
is discussed later, new roles for mitochondrial Ca2+ homeostasis
are also emerging for normal neuron physiology. For example,
it was recently described that olfactory sensory neurons require
mitochondrial Ca2+ mobilization in order to encode intensity
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(Fluegge et al., 2012). Therefore, aberrant mitochondrial Ca2+
homeostasis in these neurons converts them into simple signal
detectors and impairs their function in olfaction.

Calcium buffers and sensors
A large set of proteins with ability to bind Ca2+ specifically and
reversibly provide yet another level of control in Ca2+ homeostasis
by acting as sensors or buffers (Figure 1; Table 1). A large family of
these Ca2+-binding proteins is the one containing EF-hand Ca2+
binding domains. These motifs consist of two 10–12 residue long
alpha helices, oriented perpendicularly against each other, sepa-
rated by a 12-residue long loop region. EF-hand domains often
exist as multiple pairs generating a wide structural and functional
variability within this large family of proteins (Kretsinger, 1980).
A prominent member of this family, calmodulin, serves as a Ca2+
sensor that translates graded changes of intracellular Ca2+ con-
centration into a graded signaling response by interacting with
various Ca2+-sensitive enzymes.

Another set of EF-hand-containing proteins, represented by
calretinin, calbindin, and parvalbumin, function as Ca2+ buffers.
These proteins are predominantly expressed by the inhibitory
GABAergic interneurons of the central nervous system in spe-
cific patterns, therefore contributing to the diversification of
these interneurons into distinct subtypes (Van Brederode et al.,
1990). A multitude of studies has demonstrated that these pro-
teins modulate the Ca2+ levels locally in the presynaptic active
zone or at postsynaptic densities. Moreover, they are thought
to actively and differentially participate in modulating neuronal
vulnerability to different types of stress. In hippocampal pri-
mary cultures, neurons expressing calbindin are less vulnerable to
oxidative stress-induced apoptosis because they recover Ca2+ con-
centration more effectively after stimulation, whereas in cortical
neurons this is true for calretinin-containing neurons (Mattson
et al., 1991). Similarly, genetic over-expression of parvalbumin
in mice rescues motorneurons from injury-induced cell death
(Dekkers et al., 2004).

It is generally thought that the transduction of the Ca2+ signal
by EF-hand proteins consists a series of conformational changes
that occur after Ca2+ has become bound. However, it is important
to also mention that there are some exceptions, as no significant
conformational changes after Ca2+ binding have been described
for at least two of the EF-hand proteins, such as parvalbumin
itself and calbindin, which are thus likely to act instead only as
temporal Ca2+ buffers. Although most EF-hand proteins reside in
the cytosol (and in the nucleoplasm), reticulocalbin is localized in
the lumen of the ER (Tachikui et al., 1997). On the other hand,
Cab45 (Scherer et al., 1996) and nucleobindin are localized in the
Golgi apparatus (Lin et al., 1998) and glycerophosphate dehydro-
genase (Pilstrom and Kiessling, 1972) and Aralar are located on
the outer face of the inner mitochondrial membrane (del Arco
and Satrustegui, 1998; Del Arco et al., 2000).

Another group of Ca2+-binding proteins, collectively known
as intracellular neuronal calcium sensors (NCS; Braunewell and
Gundelfinger, 1999; Burgoyne and Weiss, 2001), includes five
subfamilies: the recoverins and guanylyl cyclase activating pro-
teins (GCAPs), which are primarily expressed in retinal pho-
toreceptor cells and have established roles in the regulation of

photo-transduction; the frequenins, visinin-like and Kv-channel-
interacting proteins (KChIPs), which are widely expressed in
central neurons. One key feature of most NCS is N-terminal
acylation: several members of the family are N-terminally myris-
toylated. Binding of Ca2+ to recoverin, and presumably to
other NCS proteins, changes their conformation, exposing the
myristoyl residue and hydrophobic portions of the molecule,
making them available for membrane (or target protein) inter-
action. The Ca2+-myristoyl switch could be a mechanism that
affects the compartmentation of signaling cascades in neu-
rons and/or the transmission of Ca2+ signals to their mem-
branes (Braunewell and Gundelfinger, 1999; Burgoyne and Weiss,
2001). Although the functions of the last three families are
not clearly defined, it has been shown that they interact with
multiple target proteins and with nucleic acids as well (Car-
rion et al., 1999). KChIP3 encodes the protein calsenilin, shown
recently to interact with presenilin 1 and 2, two proteins whose
mutations result in familial Alzheimer’s disease (AD; Buxbaum
et al., 1998; Buxbaum, 2004). Relevant to the neurodegenera-
tive phenotype of AD pathology, this interaction was shown
to modulate the proteolytic processing of presenilins. In addi-
tion, two other NCS proteins, recoverin and GCAP1 have been
involved in degenerative diseases of the retina. Mutations in
the GCAP gene have been associated with autosomal domi-
nant cone dystrophy. One of the defects has been related to
constitutive activation of guanylyl cyclase that is not properly
inactivated by high levels of Ca2+, characteristic of physiologi-
cal dark conditions, eventually leading to degeneration of cone
cells (Dizhoor et al., 1998; Sokal et al., 1998). The other condition
[GCAP1(P50L); Sokal et al., 2000] is a milder form of autoso-
mal dominant cone dystrophy in which the mutation reduces the
Ca2+-binding ability of GCAP1. Recoverin has been identified
as the autoantigen in a degenerative disease of the retina called
cancer-associated retinopathy (CAR), in which patients lose vision
due to degeneration of photoreceptors (Polans et al., 1991; Polans
et al., 1995).

BRAIN AGING AND THE “CALCIUM HYPOTHESIS”
The potential contribution of altered Ca2+ homeostasis at least to
some aspects of brain aging and neurodegeneration was first put
forward by Khachaturian in the 1980s, with the formulation of the
“Ca2+ hypothesis of aging” (Gibson and Peterson, 1987; Dister-
hoft et al., 1994; Khachaturian, 1994). Early findings in the field
that corroborated this hypothesis examined the major transport
pathways of Ca2+ during aging and found that at least in some
types of neurons, such as the principal cells in the hippocam-
pal CA1 region, there is an increased Ca2+ influx mediated by
increased VOCC activity in aged neurons (Landfield and Pitler,
1984; Thibault and Landfield, 1996). Similarly, Ca2+ extrusion
through the PMCA was found to be decreased in aged neurons
(Michaelis et al., 1996). Subsequently, the focus shifted toward the
intracellular mechanisms of Ca2+ homeostasis and their dereg-
ulation during aging. Several studies demonstrated that there is
an increased release of Ca2+ from the ER stores through both the
InsP3 and RyR receptors (Thibault et al., 2007), leading to the pro-
posal that release from the RyR receptor may be a useful biomarker
of neuronal aging. Below, we will consider in more detail findings
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that relate to two key elements of aging: aberrant synaptic plasticity
and neurodegeneration.

ROLE OF CALCIUM IN SYNAPTIC PLASTICITY AND NEURONAL
EXCITABILITY DURING AGING
Aging of the brain is manifested in humans by a progressive cog-
nitive decline associated with weakening of the ability to process
new information and of the executive function. The most dramatic
effect is notably observed on the function of episodic memory,
including spatial memory. The cognitive decline associated with
normal aging is not attributed to significant neuronal loss (Gal-
lagher et al., 1996), but is rather thought to result from changes
in synaptic connectivity and plasticity. There is a general con-
sensus that memory and learning are molecularly encoded by
mechanisms controlling synaptic plasticity in several brain areas.
Among these, the afferent pathways of the hippocampus are the
most relevant, but other areas such as the amygdale, the visual,
somatosensory and prefrontal cortices, and the subiculum also
play important roles in processing, integration, and consolidation
of new information. Using mainly the hippocampus, numerous
studies have deciphered a major role for Ca2+ in the two major
forms of synaptic plasticity, LTP (Bliss and Collingridge, 1993) and
long-term depression (LTD). LTP represents an increase in synap-
tic transmission, induced by pattern stimulation of afferent fibers
and it is the main process proposed to underlie memory forma-
tion. On the other hand, LTD is a means of decreasing synaptic
strength, contributing to the loss of synaptic contacts and associ-
ated with increased forgetfulness during aging (Foster, 1999, 2007;
Zhou et al., 2004; Shinoda et al., 2005). Age-related changes in LTP
and LTD underline the functional significance of altered synaptic
plasticity for cognitive function (Foster and Norris, 1997; Foster,
1999; Foster and Kumar, 2002).

Relevant to the role of Ca2+ deregulation in memory loss, the
critical event leading to induction of LTP appears to be the large
influx of calcium ions into the postsynaptic spine. Importantly,
LTP is blocked by injection of intracellular Ca2+ chelators such
as EGTA (Lynch et al., 1983) or BAPTA (Mulkey and Malenka,
1992) and conversely, LTP is induced when the postsynaptic cell
is loaded with calcium (Malenka et al., 1988). Therefore, it is well
established that a significant elevation of postsynaptic Ca2+ con-
centration is both necessary and sufficient for the induction of
hippocampal LTP (Bliss and Collingridge, 1993). In contrast, a
modest rise in Ca2+ concentration results in induction of LTD
through activation of protein phosphatases that dephosphorylate
AMPA receptors (Artola and Singer, 1993; Lisman, 1989, 1994).
Due to the differential level of Ca2+ fluctuation involved in the
generation of the various forms of synaptic plasticity, the stimu-
lation patterns for the induction of LTP and LTD constitute high-
and low-frequency stimulation, respectively.

In general, the effect of aging on synaptic plasticity can be
summarized by several key observations: First, the threshold for
induction of LTP increases such that higher stimulation frequen-
cies or more induction sessions are required in older animals in
order to achieve the same level of potentiation. Second, the thresh-
old for induction of LTD is lowered in aged animals, facilitating
its prevalence. Furthermore, the maintenance of LTP is disrupted
such that the enhanced transmission decays more rapidly in aged

animals. In contrast, LTD and depotentiation, or erasure of LTP,
are increased in aged animals due to a lowering of the threshold
stimulation needed for induction of synaptic depression (Norris
et al., 1996; Foster and Norris, 1997; Kamal et al., 2000; Vouimba
et al., 2000). Thus, the age-related decline in synaptic transmis-
sion (Barnes, 1994) may reflect a shift in the LTP/LTD balance,
with insufficient LTP induction and maintenance and excessive
synaptic depression (Foster et al., 2001).

In most of the synapses that support LTP (in the hippocampus
and elsewhere), the postsynaptic increase in calcium is mediated
through the activation of the NMDA receptor. As already men-
tioned earlier, NMDA receptor activation allows the influx of
calcium only when the receptor is occupied by L-glutamate and
concomitantly the postsynaptic membrane is depolarized. Emerg-
ing evidence indicates that the synaptic plasticity shift during
aging results from changes in the source of Ca2+ such that Ca2+
influx through NMDARs is reduced (Lehohla et al., 2008; Bod-
hinathan et al., 2010) and Ca2+ influx through L-type VDCCs is
increased (Barnes, 1994; Norris et al., 1996; Thibault and Land-
field, 1996; Shankar et al., 1998; Potier et al., 2000). The increase
could arise from altered gene or protein expression (Herman et al.,
1998), or phosphorylation changes of the L-type Ca2+ channels
(Norris et al., 2002; Davare and Hell, 2003). Interestingly, the L-
type Ca2+ channel blocker nimodipine counteracts age-related
learning impairment in rabbits (Deyo et al., 1989; Kowalska and
Disterhoft, 1994), rodents (Levere and Walker, 1992), non-human
primates (Sandin et al., 1990), and elderly patients with dementia
(Ban et al., 1990; Tollefson, 1990).

Additionally, aged neurons show a multitude of defects in Ca2+
homeostasis, including enhanced release of Ca2+ from the ER
(Kumar and Foster, 2004; Gant et al., 2006), diminished Ca2+
extrusion through the plasma membrane ATPase (Michaelis et al.,
1996; Gao et al., 1998), reduced cellular Ca2+ buffering capacity
due to impairment of the SERCA pumps (Murchison and Grif-
fith, 1999), and diminished mitochondrial Ca2+ sink capability
(Murchison and Griffith, 1999; Xiong et al., 2002). The overall
result is an increase of Ca2+ loads which negatively impact neu-
ronal excitability (Landfield and Pitler, 1984; Khachaturian, 1989;
Matthews et al., 2009). Moreover, such an increase in intracellular
Ca2+ concentration increases the threshold frequency for induc-
tion of LTP (Shankar et al., 1998; Ris and Godaux, 2007), and
enhances the susceptibility to induction of LTD (Norris et al., 1996;
Kumar and Foster, 2005), ultimately explaining the age-associated
deficits in learning and memory. In line with this notion, admin-
istration of the cell permeable Ca2+ chelator BAPTA, ameliorates
impaired presynaptic cytosolic and mitochondrial Ca2+ dynam-
ics in hippocampal CA1 synapses of old rats (Tonkikh and Carlen,
2009), and enhances spatial learning (Tonkikh et al., 2006).

In the context of LTP induction, a key early finding was the
observation that postsynaptic entry of calcium leads to activation
of Ca2+/calmodulin complex-dependent kinase II (CaMKII), one
of the most abundant proteins in neurons comprising 1–2% of
the total protein. Although it is expressed both pre- and postsy-
naptically, its expression is particularly high in the postsynaptic
density, where it is ideally located to respond to changes in cal-
cium concentration. There are more than 30 isoforms of CaMKII
and numerous substrates, many of which are located in the
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postsynaptic density (Fink and Meyer, 2002). CaMKII is generally
considered a mediator of primary importance in linking transient
calcium signals to neuronal plasticity. Importantly, observations
by Silva et al. (1992a,b,c) indicated that deletion of the CaMKII
gene in mice results in impaired LTP and aberrant spatial memory.
Moreover, activation of CaMKII is significantly reduced in aged
hippocampal neurons (Mullany et al., 1996). The data obtained
from studies on rodents have to a large extent, been paralleled by
similar findings in other organisms, indicating that several models
expressing various forms of synaptic plasticity exhibit a require-
ment for CaMKII activation. For instance, CaMKII knockout in
Drosophila exhibits impaired associative learning, while motor and
sensory systems remain unaffected (Joiner and Griffith, 1999).
Similarly, knockout of unc-43 (a gene encoding the CaMKII analog
in C. elegans) affects the stability of synapses and general neuronal
physiology, ultimately culminating in altered function of olfactory
neurons (Sagasti et al., 2001).

Beyond activating the CaMKII signaling cascade, Ca2+ also
acts as a second messenger that is responsible for the activity-
dependent transcription of several key genes (West et al., 2001).
The products of these genes are necessary in order to convert the
effects of transient stimuli into long-term changes in brain func-
tion, a process that is required for the formation of memories. Of
the neural-selective activity-dependent genes, brain-derived neu-
rotrophic factor (BDNF) is activated by calcium influx through
L-type VOCCs (L-VOCCs) acting on the transcription of BDNF
from promoter III (West et al., 2001). BDNF is among the most
relevant calcium targets for the modulation of memory. BDNF
transcription is up-regulated dramatically by membrane depo-
larization in vitro (Ghosh et al., 1994; Tao et al., 1998) and by
induction of LTP, and associative learning (Ernfors et al., 1991; Pat-
terson et al., 1992; Tokuyama et al., 2000). Moreover, loss of BDNF
is associated with impaired LTP among other synaptic defects. It is
also well established that BDNF transcription is largely decreased
during aging (Tapia-Arancibia et al., 2008), and that epigenetic
induction of BDNF transcription in aged subjects significantly

ameliorates the cognitive and memory defects associated with
aging (Zeng et al., 2011). A summary of the perturbations of
Ca2+ homeostasis associated with nervous system aging is shown
in Table 2.

ROLE OF CALCIUM IN AGING-RELATED NEURODEGENERATION
Aging is the greatest risk factor for the development of neurode-
generative disorders. These include a diverse collection of patholo-
gies characterized by the late onset and gradual loss of specific
neuronal subpopulations in motor, sensory, or cognitive systems.
Despite major intrinsic differences in the etiology of each disorder,
deregulated Ca2+ homeostasis has emerged as a common underly-
ing mechanism of neuronal loss in AD, Parkinson’s (PD) diseases,
amyotrophic lateral sclerosis (ALS), and other neurodegenerative
disorders (Mattson, 2007; Bezprozvanny, 2009).

Alterations of Ca2+ homeostasis may be in some cases directly
responsible for neuronal death. Persistently increased levels of
intracellular Ca2+ can result in severe phenotypes in neurons,
culminating to neuronal death and degeneration (Siman et al.,
1989; Celsi et al., 2009). This process is often specifically mediated
or even initiated by the diminished capacity of mitochondria to
buffer Ca2+. An example where there is ample evidence that altered
mitochondrial Ca2+ homeostasis mediates neuronal loss is ALS, an
adult onset disease, with incidence increasing with age. ALS is char-
acterized by selective and progressive degeneration of motorneu-
rons in the spinal cord and brain, leading to weakness, atrophy,
and paralysis of voluntary muscles. Mutations in superoxide dis-
mutase (SOD1) are the most common genetic factors responsible
for about 20% of familial ALS cases (Rosen et al., 1993). SOD1 is a
ubiquitously expressed enzyme that converts superoxide to hydro-
gen peroxide in order to protect cells against oxidative stress. While
there is still no consensus as to how mutant SOD1 causes selec-
tive toxicity to motorneurons, increasing evidence suggests that
the mechanisms largely concentrate on the dysfunction of ER and
mitochondrial Ca2+ homeostasis (Bacman et al., 2006; Hervias
et al., 2006; Magrane et al., 2009; Shi et al., 2010).

Table 2 | Perturbations of Ca2+ homeostasis in the aging nervous system.

Ca2+ deregulation associated with aging of the nervous system Reference

Increased Ca2+ influx mediated by voltage-dependent calcium channels Landfield and Pitler (1984), Thibault and Landfield (1996)

Decreased Ca2+ extrusion through the plasma membrane pump (PMCA) Michaelis et al. (1996), Gao et al. (1998)

Increased release of Ca2+ from the ER stores through both the InsP3 and Thibault et al. (2007)

RyR receptors

Reduced Ca2+ influx through NMDARs Lehohla et al. (2008), Bodhinathan et al. (2010)

Increased Ca2+ influx through L-type VDCCs Barnes (1994), Norris et al. (1996), Thibault and Landfield (1996),

Shankar et al. (1998), Potier et al. (2000)

Phosphorylation changes of the L-type Ca2+ channels Norris et al. (2002), Davare and Hell (2003)

Increased release of Ca2+ from the ER Gant et al. (2006), Kumar and Foster (2004)

Impairment of the SERCA pumps Murchison and Griffith (1999)

Diminished mitochondrial Ca2+ sink capability Murchison and Griffith (1999), Xiong et al. (2002)

Reduced activation of CaMKII in hippocampal neurons Mullany et al. (1996)

Reduced Ca2+-dependent transcription of genes such as BDNF Tapia-Arancibia et al. (2008)
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At the level of the ER, a recent paper implicates the Ca2+ buffer-
ing protein calreticulin in the death of motorneurons in a model
of ALS (Bernard-Marissal et al., 2012). More specifically, fast fati-
gable motorneurons selectively activate an ER stress response
that drives their early degeneration, while a subset of mSOD1
motorneurons shows exacerbated sensitivity to activation of the
motorneuron-specific Fas (transmembrane TNF receptor super-
family member 6) and nitric oxide (NO) pathway. However, the
links between the two mechanisms and the molecular basis of their
cellular specificity remained unclear. This paper demonstrates that
Fas activation causes reduced levels of calreticulin specifically in
mSOD1 motorneurons. Decreased expression of calreticulin is
both necessary and sufficient to trigger SOD1(G93A) motorneu-
ron death through the Fas/NO signaling pathway, and represents
an early event that precedes muscle denervation and is restricted
to vulnerable motor pools.

At the mitochondrial level, altered Ca2+ handling also appears
early on, before motorneuron degeneration is manifested, sug-
gesting that it is actively involved in disease pathogenesis. SOD1,
which is a predominantly cytosolic protein, also localizes to the
ER and mitochondria (Jaarsma et al., 2001; Okado-Matsumoto
and Fridovich, 2001; Higgins et al., 2002; Mattiazzi et al., 2002),
predominantly in the intermembrane space and less so on the
outer membrane (Pasinelli et al., 2004; Vande Velde et al., 2008)
and matrix (Vijayvergiya et al., 2005). By mechanisms that are still
poorly understood, mutant SOD1 induces increased Ca2+ uptake
by mitochondria, as convincingly demonstrated in mitochondria
isolated from the brain and spinal cord of SOD1 mutant mice
(Damiano et al., 2006). This defect appears to be neuron-specific,
as liver cells from the same mutants retain unaffected mitochon-
drial Ca2+ homeostasis. Impaired Ca2+ handling by mitochondria
is thought to be the primary cause of the abnormally high con-
centration of intracellular Ca2+ observed in ALS motorneurons
(Carri et al., 1997; Kruman et al., 1999), making them vulnerable
to degeneration (Kim et al., 2002, 2007).

Mitochondrial Ca2+ overload is associated with activation of
cell death pathways (Bernardi et al., 1999) and is observed in many
pathological conditions in addition to ALS (Honda and Ping, 2006;
Norenberg and Rao, 2007). The mechanisms responsible for Ca2+
overload are not entirely clear; however, their elucidation could
provide a base for significant pharmacological interventions in
the future. Theoretically, defects of the mitochondrial NCX could
be involved in causing Ca2+ overload in ALS, although this puta-
tive mechanism remains to be directly explored. Another potential
factor contributing to Ca2+ overload could be the functional and
physical link between mitochondria and ER. Transfer of Ca2+ from
the large stores in the ER to mitochondria depends on the relative
positioning of these two organelles, and it is thought to occur at
Ca2+ “hotspots”, sites where ER and mitochondrial membranes
are in close physical contact (Rizzuto et al., 1999). Shortening
the distance between the two organelles was shown to result in
increased accumulation of Ca2+ in mitochondria, causing cell
death (Csordas et al., 2006). Since mutant SOD1 accumulates both
in ER (Kikuchi et al., 2006; Urushitani et al., 2006) and mitochon-
drial (Liu et al., 2004) membranes, it is plausible that the structure
of these calcium hotspots is altered in mutant neurons, leading to
abnormal handling of Ca2+ between the two organelles.

Whatever the mechanism of the increased Ca2+ accumula-
tion in mitochondria, activation of cell death by mitochondrial
Ca2+ overload involves the opening of the mPTP, followed by
release of cytochrome c, and downstream activation of apopto-
sis. Cytochrome c released into the cytosol can further propagate
apoptotic signaling by binding to the IP3-R on the ER, desen-
sitizing its autoinhibition by calcium and thus causing further
calcium release from ER stores (Boehning et al., 2003). Ablation
of cyclophilin D (CypD), a modulatory component of the mPTP,
delays the opening of mPTP (Basso et al., 2005) and has a protec-
tive effect against neuronal death in models of ischemia (Baines
et al., 2005; Schinzel et al., 2005). In ALS, it was also reported that
loss of CypD in SOD1 mutant mice delays the onset of the disease
and significantly extends lifespan (Martin et al., 2009). Moreover,
two studies using the immunosuppressant cyclosporin A, which
binds to CypD to inhibit mPTP, in mutant SOD1 mice, suggest
that inhibition of mPTP may be of benefit to ALS (Keep et al.,
2001; Kirkinezos et al., 2004).

Another mechanism whereby Ca2+ contributes to the activa-
tion of cell death is by stimulating the production of mitochondrial
reactive oxygen species (ROS). Oxidative stress caused by the
damaging effect of ROS to proteins, lipids, and DNA, is a com-
mon feature of aging-related diseases, including ALS (Floyd and
Hensley, 2002; Lin and Beal, 2006). Mitochondrial dysfunction
(Wei, 1998), and particularly mitochondrial Ca2+ overload (Pet-
rosillo et al., 2004), increases ROS production. In particular,
increased levels of mitochondrial Ca2+ enhance cytochrome c
release through a mechanism involving ROS-mediated oxidation
of cardiolipin (Vercesi et al., 1997; Iverson and Orrenius, 2004).
Notably, lipid peroxidation (Mattiazzi et al., 2002) and dissoci-
ation of cytochrome c from the mitochondrial inner membrane
(Kirkinezos et al., 2005) have been reported in mutant SOD1 mice,
but also in PD (Beal, 2003), and AD (Green and Kroemer, 2004;Lin
and Beal, 2006; Kawamoto et al., 2012; Lee et al., 2012a).

Alzheimer’s disease is perhaps the most widespread neu-
rodegenerative disorder of the elderly, with most familiar cases
attributed to several mutations in presenilin 1 and 2, genes whose
protein products are responsible for the proteolytic cleavage of
the amyloid precursor peptide (APP). The mechanism by which
presenilin mutations cause AD involves increased production of
Aβ1–42 which aggregates and damages neurons. This view has
been recently expanded by emerging findings suggesting that
perturbed ER Ca2+ homeostasis significantly contributes to the
dysfunction and degeneration of neurons in AD (Kipanyula et al.,
2012). For example, recent work indicates that there is impaired
Ca2+ uptake by mitochondria in the dentate gyrus of a mouse
model of AD (Lee et al., 2012b). This can be explained to some
extent by the novel role proposed by at least two groups for prese-
nilins as regulators of Ca2+ homeostasis in the ER (Pack-Chung
et al., 2000; Yoo et al., 2000). Interestingly, mutations in prese-
nilin 1 that cause early onset familial AD, increase the pool of ER
Ca2+ available for release, and enhance Ca2+ release from the ER
through IP3- and RyR receptors (Chan et al., 2000; Guo et al., 1996,
1999; Cheung et al., 2010; Leissring et al., 2000). Future research
should clarify the specific contributions of perturbed ER Ca2+
handling to the cellular events that underlie synaptic dysfunction
and neuronal degeneration in AD. While elevated pools of ER
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Ca2+ resulting from mutations in presenilins have been widely
documented in a range of cell culture and animal models, the
molecular basis of this alteration remains unknown and is poten-
tially a key field for the development of novel pharmacological
targets.

In addition to direct effects on neuronal survival, altered
Ca2+ homeostasis is also likely to contribute to the initiation
or progression of the neurodegenerative process by enhancing
neuronal vulnerability to metabolic and other stressors (Toescu
and Verkhratsky, 2004; Toescu and Vreugdenhil, 2010). One such
example is the population of basal forebrain cholinergic neurons,
a group of neurons that are selectively vulnerable to pathology and
loss early in AD, as well as in a number of other neurodegenera-
tive disorders of the elderly. In the primate, including man, these
neurons are rich in the Ca2+ buffer protein calbindin. Notably,
there is a substantial loss of calbindin in the course of normal
aging and a further loss in AD(Iacopino and Christakos, 1990).
Significantly, cholinergic neurons that had lost their calbindin in
the course of normal aging were those that selectively degener-
ated in AD, while calbindin-containing neighboring neurons were
virtually resistant to the process of tangle formation, a hallmark
of the disease (Riascos et al., 2011). Another study reported that
over-expression of calbindin in presenilin 1 mutant neurons was
sufficient to prevent apoptosis (Guo et al., 1998). Similarly, a dra-
matic reduction in the Ca2+ buffering protein calbindin levels has
been described in brains of PD patients (Iacopino and Christakos,
1990) and dopaminergic (DA) neurons expressing higher levels of
calbindin, or other Ca2+ buffers such as calretinin and parvalbu-
min, were shown to be resistant to degeneration in PD (Yamada
et al., 1990; Tsuboi et al., 2000). These findings are consistent
with earlier findings suggesting that calbindin-positive hippocam-
pal neurons are more resistant against oxidative stress (Mattson
et al., 1991), although other Ca2+ buffer proteins seem to confer
resistance to stress in different neuronal subpopulations. Under-
standing the mechanisms underlying such an instructive function
of Ca2+ buffer proteins is of great importance as there may be
a yet unidentified crosstalk with major signaling cascades. More
work in this direction would greatly enhance our ability to selec-
tively intervene in order to modulate the vulnerability of distinct
neuronal populations.

Similar to ALS and AD, PD is another case where Ca2+ deregu-
lation has recently attracted a lot of attention. PD is characterized
by motor defects resulting from the selective loss of DA neurons in
the substantia nigra and intracellular accumulation of cell aggre-
gates known as Lewy bodies, mostly composed of α-synuclein.
The idea that mitochondria could be directly involved in the
pathogenesis of PD comes from the early accidental observation
that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an
inhibitor of the mitochondrial respiratory chain complex I, causes
Parkinson-like symptoms (Langston and Ballard, 1983). Later on,
it was also demonstrated that DA neurons from PD patients show
massive accumulation of mitochondrial DNA (mtDNA) deletions
that impair the function of the respiratory chain complexes (Exner
et al., 2012), thus increasing the probability of dysfunctions in
these organelles.

Some clues as to the selective vulnerability of this popula-
tion arise from the fact that DA neurons of the substantia nigra

display unusual physiological properties. First, unlike most other
neurons in the brain, they are autonomously active, generating
regular action potentials in the absence of synaptic input (Grace
and Bunney, 1983). This pacemaking activity is thought to main-
tain physiological levels of dopamine in regions they innervate,
particularly the striatum (Romo and Schultz, 1990). To drive
this pacemaking activity, these neurons rely, at least in part, on
a rare form of L-type Ca2+ channels (Bonci et al., 1998; Ping
and Shepard, 1996; Puopolo et al., 2007) comprised of the Cav1.3
pore-forming subunit (Striessnig et al., 2006; Chan et al., 2007).
This leads to typically elevated intracellular Ca2+ concentrations
under physiological conditions (Wilson and Callaway, 2000; Chan
et al., 2007). Second, DA neurons of the substantia nigra display
an elaborate axonal network (Matsuda et al., 2009), supporting
orders of magnitude more synapses compared to a cortical pyra-
midal neuron (Arbuthnott and Wickens, 2007). As a result, the
mitochondrial density in their somatic and dendritic regions is
very low compared to other neuronal types (Liang et al., 2007).
Taken together, these characteristics are thought to contribute to
an intrinsic state of increased metabolic stress, where increased
load of intracellular Ca2+ is met by a depleted mitochondrial
network.

Additional genetic factors could increase the rate at which
mitochondrial Ca2+ homeostasis is compromised in these already
vulnerable neurons. At least 13 gene loci and 9 genes have been
linked to both autosomal dominant and recessive forms of PD
(Lesage and Brice, 2009). Mutations in three proteins encoded
by these genes, namely, parkin (PARK2), DJ-1 (PARK7), and
PINK1 (PARK6), are associated with recessive early onset forms
of PD, whereas mutations in α-synuclein (PARK1–4) and LRRK2
(PARK8) are responsible for dominant forms of familial PD. Mito-
chondrial dysfunction has been described for mutants of all these
genes (Lesage and Brice, 2009).

Recent papers have started to explore in more detail the pos-
sibility of Ca2+ handling by the PD-related proteins. DJ-1 is a
multitask protein that, in addition to its main role as an antioxi-
dant (Taira et al., 2004), is also involved in maintaining cytosolic
basal Ca2+ concentration values to permit depolarization-induced
Ca2+ release from the sarcoplasmic reticulum in muscle cells
(Shtifman et al., 2011). Moreover, DJ-1 was shown to pro-
tect DA neurons from Ca2+-induced mitochondrial uncoupling
and ROS production during physiological pacemaking (Guzman
et al., 2010).

Regarding α-synuclein, it has been described that it can mod-
ulate Ca2+ influx from the extracellular milieu by enhancing the
plasma membrane ion permeability (Danzer et al., 2007) either
through their direct insertion into the plasma membrane and the
formation of a pore (Lashuel et al., 2002) or through the modu-
lation of plasma membrane Ca2+ permeability (Furukawa et al.,
2006). The actual mechanisms through which α-synuclein aggre-
gation and Ca2+ dysfunction influence each other are not clear,
however, a functional interplay is unambiguous: Increased intra-
cellular Ca2+ promotes α-synuclein aggregation, which in turn
could promote intracellular Ca2+ increase (Nath et al., 2011).
A recent study suggests that using its C-terminal domain, α-
synuclein controls mitochondrial calcium homeostasis by enhanc-
ing ER–mitochondria interactions (Cali et al., 2012). As these
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results were obtained in vitro using non-neuronal cell lines, their
relevance to DA neuron physiology and pathology remains to be
examined.

As to PINK1, its direct role in regulating cellular, and most
specifically mitochondrial Ca2+ fluxes, has been recently pro-
posed starting with the observation that the co-expression of
mutant PINK1 in a cellular model of PD-expressing mutated α-
synuclein exacerbated the observed mitochondrial defects, that
is, increased mitochondrial size with loss of cristae and reduced
ATP levels (Marongiu et al., 2009). The proposed mechanisms
of PINK1 action was based on a deregulation of mitochon-
drial Ca2+ influx. As by blocking mitochondrial Ca2+ uptake, it
was possible to restore the original phenotype (Marongiu et al.,
2009), thus suggesting that mutant PINK1 could reinforce α-
synuclein pathology by acting on converging pathways affecting
mitochondrial function. Other studies have further investigated
the role of PINK1 in mitochondrial Ca2+ metabolism, but the
results are controversial. In one case, it was proposed that PINK1
absence caused an impairment of mitochondrial Ca2+ efflux,
probably affecting the mitochondrial Na+/Ca2+ exchanger activ-
ity and thus resulting in mitochondrial Ca2+ overload, ROS
production, and impaired respiration (Gandhi et al., 2009). In
another very recent study, PINK1 depletion has instead been
shown to impair mitochondrial Ca2+ uptake and consequently to
affect energy metabolism (Heeman et al., 2011). However, consis-
tently, numerous reports showed that PINK1-deficient cells have
impaired mitochondrial membrane potential and enhanced sen-
sitivity to the toxic effects of mitochondrial complex I inhibitors

(Wood-Kaczmar et al., 2008), as well as enhanced Ca2+ vulnera-
bility (Akundi et al., 2011).

OUTLOOK
Given the fundamental importance of Ca2+ homeostasis in the
biology of all cells, it is not completely surprising that more and
more studies suggest that deregulated Ca2+ is actively involved
in the course of normal aging and in diverse pathological condi-
tions. A general message arising from these studies is that in the
nervous system Ca2+ signaling and homeostasis should be exam-
ined in view of the amazing cellular diversity exhibited by the
nervous system. The machinery controlling Ca2+ homeostasis is
similarly diverse among neurons, uniquely suited to the needs of
each neuronal subtype. Taken together, the intrinsic differences of
neurons in morphology, connectivity, proteome and Ca2+ home-
ostatic machinery are very likely to collectively and synergistically
contribute to the selective vulnerability of distinct neuronal popu-
lations to different causes of senescence. The more we understand
the interplay of Ca2+ homeostatic mechanisms with the intrinsic
qualities of different neurons, the closer we will get to developing
cell-specific therapies.
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