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The aging process has been associated with numerous pathologies at the cellular, tissue,
and organ level. Decline or loss of brain functions, including learning and memory, is one of
the most devastating and feared aspects of aging. Learning and memory are fundamental
processes by which animals adjust to environmental changes, evaluate various sensory
signals based on context and experience, and make decisions to generate adaptive
behaviors. Age-related memory impairment is an important phenotype of brain aging.
Understanding the molecular mechanisms underlying age-related memory impairment
is crucial for the development of therapeutic strategies that may eventually lead to the
development of drugs to combat memory loss. Studies in invertebrate animal models have
taught us much about the physiology of aging and its effects on learning and memory. In this
review we survey recent progress relevant to conserved molecular pathways implicated in
both aging and memory formation and consolidation.
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INTRODUCTION
During the past century, age-related memory impairments have
emerged as one of the top public health threats. Both psychi-
atric and neurodegenerative disorders comprising schizophrenia,
depression, Alzheimer’s disease (AD), Parkinson’s disease (PD),
and Huntington’s disease (HD) are associated with age-related
memory impairment. In humans, cognitive decline starts in mid-
life and deepens with advancing age suggesting that the greatest
risk factor is age itself. Thus, ultimately, prevention of these
pathologies necessitates thorough understanding of the molecular
mechanisms underlying their links with the aging process (Bishop
et al., 2010).

Our knowledge of the molecular regulatory mechanisms of
aging impinging on cognitive capacity is steadily increasing in
recent years. Interestingly, analyses of vertebrate and invertebrate
model systems suggest that molecular and genetic pathways regu-
lating cognitive aging are highly conserved in yeast, flies, worms,
and mammals (Barco et al., 2006; Ardiel and Rankin, 2010; Bishop
et al., 2010; Kauffman et al., 2010). Accumulating evidence from
these models suggest a dynamic association between cognitive
functions and aging. Similarly to several phenotypes and biomark-
ers of aging, which can vary substantially among individuals,
cognitive decline displays significant severity fluctuation within
a population. Consequently, it is important to identify key reg-
ulators of both cognitive impairment and longevity pathways.
A plethora of molecular and cellular studies indicate a strong
entanglement between lifespan regulation pathways and cognitive
decline or neurodegeneration. In this review, we survey the molec-
ular mechanisms and genes associated with longevity that have
also been implicated in cognitive aging (summarized in Table 1).
We further focus on recent work in invertebrate model organisms
linking learning and memory impairment with age.

REDUCED INSULIN/IGF-1 SIGNALING PROMOTES LEARNING
ABILITY DURING AGING
The insulin/IGF-1 (IIS) signal transduction pathway and its down-
stream effectors have been found to influence lifespan in a wide
range of diverse organisms, suggesting a tightly conserved role
of these mechanisms in aging. Reduction of IIS signaling pro-
motes longevity in Caenorhabditis elegans and flies (Kenyon et al.,
1993; Kenyon, 2010; Partridge, 2010). Whether this function is
conserved in mice and humans remains unclear (Clancy et al.,
2001; Tatar et al., 2001; Bluher et al., 2003; Suh et al., 2008; Bokov
et al., 2011). Main components of insulin signaling in C. ele-
gans are the insulin homolog INS-1, its receptor DAF-2, and the
PIP3-kinase (phosphatidylinositol-triphosphate kinase) homolog
AGE-1. Insulin signaling has been implicated in learning and
memory, and in neuronal aging. Reduction of IIS attenuates pro-
tein aggregation and insolubility, and prevents amyloid-beta toxic
effects. These processes are tightly associated with impaired ner-
vous system function and age-related neurodegenerative diseases
(Florez-McClure et al., 2007; David et al., 2010; Keowkase et al.,
2010; Zhang et al., 2011; Tamura et al., 2013). In mouse models
of AD, reduced IGF1 signaling protects from disease-associated
neuronal loss and behavioral impairment, allthough IGF1R hap-
loinsufficiency does not necessarily extent lifespan in mice (Cohen
et al., 2009; Bokov et al., 2011).

In C. elegans, IIS has been shown to influence thermo-
taxis learning (Kodama et al., 2006) and salt chemotaxis learning
(Tomioka et al., 2006). Moreover, long-lived IIS mutants show
improved ability to associate temperature with food at both
young and old age (Murakami, 2007). By contrast, some of
these mutants are impaired, at young age, in their ability to
associate NaCl with the absence of food (Vellai et al., 2006),
or to intergrate sensory stimuli, such as Cu2+ and diacetyl
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Table 1 | Conserved signaling pathway genes and cognitive aging in worms and flies.

Pathway Gene Cognitive aging effect

Caenorhabditis elegans Drosophila melanogaster

Insulin signaling ins-1/INS Regulates gustatory associative learning, thermotaxis, and

chemotaxis learning

NA1

daf-2/IGFR Inhibits growth cone initiation, axon growth and neuronal

regrowth; loss-of-function improves thermotaxis associative

learning and blocks chemotaxis/sensory integration learning

NA

age-1/PI3K Mutations improve thermotaxis learning with age but cause

defects in chemotaxis associative learning

NA

daf-18/PTEN Loss-of-function decreases chemotaxis, odorant

associative, and sensory integration learning

Inhibits axon regeneration

daf-16/FoXO Neuroprotective, promotes regeneration and neuronal

migration; loss-of-function reduces associative and sensory

integration learning

NA

Dietary restriction eat-2/DR Loss-of-function increases temperature–food association

and impairs LTM2

DR3decreases STM4 at mid-age, enhances MTM5 at

young-age

TOR signaling rheb NA Overexpression induces morphology defects, and

decreases odor-sucrose MTM

rictor NA Deficiency blocks LTM

Autophagy cdk-5 NA Olfactory learning and memory defects

apl-1/APPL Olfactory and gustatory learning defects, habituation delay NA

unc-51/atg-1 NA Influence axonal and dendritic development affecting

olfactory learning

Mitochondria sod-1 NA Memory impairment associated with less synapses

and mitochondrial dysfunction

ucp-4, ucp-2 Promote neuronal toxicity in Huntington’s disease models Susceptible to Parkinson’s and Huntington’s diseases

ced-9/Debcl NA Ameliorate cognition

clk-1 Developmental and behavioral defects Influence rhythmic behaviors

1No information available, 2Long-term memory, 3Dietary restriction, 4Short-term memory, 5Mid-term memory.

perception, towards decision-making (Jiu et al., 2010). More-
over, long-lived age-1 mutant animals display delayed age-related
decline of isothermal tracking and locomotion. Similarly, age-1
and daf-2 mutants associate temperature and starvation more
efficiently compared to wild type controls, while young adults
of these muants show increased temperature–food association.
The enhanced association capacity of daf-2 mutants is depen-
dent on the neuronal Ca2+-sensor NCS-1, which modulates
isothermal tracking in the amphid interneurons, a key com-
ponent of the thermosensory circuit (Murakami et al., 2005).
AGE-1 also acts in the benzaldehyde-sensing amphid wing C
(AWC) sensory neurons to direct benzaldehyde–starvation asso-
ciative plasticity (Lin et al., 2010). While, mutations in the
daf-2 IIS receptor improve memory performance in C. elegans
early in adulthood, maintaining learning ability with age, no
extension in long-term memory (LTM) during aging is evident.
Reduced insulin signaling does not alter neuronal plasticity but
rather establishes an association more rapidly and prolongs the

duration of this association early in adulthood (Kauffman et al.,
2010).

Neuronal cells not only degenerate with age but the nervous
system also loses the ability to regenerate after injury. Genetic
experiments indicate that axon regeneration in aging C. elegans
motor neurons is repressed by elevated IIS, which inhibits both
growth cone initiation and axon growth (but not axon guidance)
in aged animals. IIS impairs regeneration by blocking the func-
tion of DAF-16, a FOXO transcription factor and downstream
effector of IIS. DAF-16/FOXO is necessary and sufficient to pro-
mote neuronal regeneration in a cell-autonomous manner. (Byrne
et al., 2014). DAF-16 has also been shown to promote devel-
opmental neuronal migration and to affect aspects of neuronal
cell morphology, such as neurite outgrowth (Christensen et al.,
2011; Kennedy et al., 2013). DLK-1, a mitogen activated kinase
kinase kinase (MAPKKK) that regulates presynaptic development
is downregulated by IIS. DAF-16 upregulates expression of dlk-1
in a neuron-specific manner, to promote neuronal regeneration
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indipendently of lifespan (Byrne et al., 2014). In addition, DAF-16
and HSF-1, the C. elegans heat shock transcription factor ortholog,
show neuroprotective characteristics since their activation can
defer the morphological and functional defects that emerge on
the synapses of touch receptor neurons with physiological aging
(Toth et al., 2012).

The totality of these findings suggest that in addition to extend-
ing lifespan, reduced IIS signaling also promotes learning ability
with age. However, this effect is not accompanied by maintenance
or extension of long term-memory during aging. Instead, IIS sig-
naling appears to play a more significant role in the retrieval rather
than acquisition of memory.

DIETARY RESTRICTION AND LONG-TERM MEMORY
Dietary restriction (DR), a reduction in total food intake, has
been shown to increase lifespan and reduce fecundity in a
wide range of organisms such as yeast, nematodes, flies, and
rodents (Masoro, 2005; Mair and Dillin, 2008; Piper and Bartke,
2008). Recent studies in primates indicate that DR prevents from
aging-related pathologies like brain atrophy,but it is still under
debate wether it extends lifespan (Colman et al., 2009; Matti-
son et al., 2012; Cava and Fontana, 2013; Colman et al., 2014).
Little is known about the genes mediating these effects of DR.
In C. elegans, knock-down of mekk-3 a homolog of the mam-
malian mitogen-activated MEKK3-like kinase, recapitulates DR
and extends lifespan. MEKK-3 deficiency leads to reprogram-
ing of fatty acid metabolism and lowering reactive oxygen species
(ROS) generation, through the nuclear hormone receptor NHR-
49 and DAF-22, an ortholog of human sterol carrier protein SCP2
(Chamoli et al., 2014).

The C. elegans feeding-defective mutant eat-2 has been utilized
as a model of DR. eat-2 mutants ingest food poorly and, as a
consequence, are long-lived. Lifespan extension by eat-2 muta-
tions is at least in part mediated through a daf-16-independent
pathway (Avery, 1993; Raizen et al., 1995; Lakowski and Hekimi,
1998; Panowski et al., 2007). DR has also been suggested to atten-
uate age-related cognitive decline in rats (Adams et al., 2008). In
C. elegans, young adult eat-2 mutants show increased consistency
of isothermal tracking (temperature–food association; Murakami
et al., 2005). Contrary to daf-2, eat-2 mutants exhibit significantly
impaired LTM during young adulthood, but maintain memory
capacity longer with age. Although young eat-2 mutants display
normal benzaldehyde chemotaxis, they require more training to
form long-term memories. The duration of short-term memory
in eat-2 animals is similar to wild type, contrary to significant short
term associative memory extension observed in daf-2 mutants
(Kauffman et al., 2010).

Dietary restriction also affects learning performance during
aging in Drosophila melanogaster. The performance of young and
old flies in an aversive learning test, where an odor is associ-
ated with a noxius mechanical shock, has been examined. These
experiments showed that dietary-restricted flies, that live on aver-
age 14% longer than rich-diet fed flies, appear to have a better
learning ability, even at old age. Young, dietary restricted flies
show enhanced mid-term memory but their short-term memory
is not affected. By contrast, short-term memory of mid-aged flies
is poorer, compared with flies that grew on rich diet. Mid-term

memory performance of mid-aged and old flies is not improved
(Burger et al., 2010). These results are consistent with findings in
C. elegans, in that only long term-memory is affected by DR during
aging (Kauffman et al., 2010). While DR and reduced IIS signaling
both increase longevity, the two pathways influence cognitive abil-
ity of young adults in an opposing manner.The differential effects
of IIS and DR on learning and memory decline with age are likely
due to their differential regulation of expression levels and activity
of CRH-1, the cyclic adenosine monophosphate (cAMP) response
element-binding protein (CREB) transcription factor homolog in
C. elegans (Kauffman et al., 2010).

MITOCHONDRIAL FUNCTION AND COGNITIVE AGING
Mitochondria play pivotal role in adenosine triphosphate (ATP)
production, calcium homeostasis, and apoptosis regulation, and
are the main source of endogenous ROS. The functionality of
these organelles influences aging through multiple pathways that
may be directly or indirectly relevant to cognitive decline. The link
between mitochondrial dysfunction, neurodegeneration, and cog-
nition has been a subject of intensive study in many metazoans,
ranging from C. elegans to humans (Bishop et al., 2010; Aksenov
et al., 2013). A growing body of evidence suggests that neuronal
structure and function are particularly vulnerable to mitochon-
drial function impairment (Stein and Murphy, 2012). However,
the contribution of mitochondria to selective neurodegenera-
tion in a variety of neurodegenerative pathologies associated with
cognitive decline remains a matter of debate.

Aging studies in invertebrate model organisms provide a com-
mon ground for mitopathology and cognitive research. Several
conserved groups of genes influencing mitochondrial metabolism,
neural plasticity and synaptic function show expression changes
during aging. In C. elegans, loss of α-tubulin acetyltransferase gene
mec-17 causes axon degeneration, thereby leading to neuronal
dysfunction. Axons lacking MEC-17 contain less mitochon-
dria, display transport defects, and loss of synaptic integrity
(Neumann and Hilliard, 2014). Atat1, the mouse homolog of
MEC-17 is associated with the formation of dentate gyrus,
which is essential for learning and memory (Kim et al., 2013).
Moreover, studies in C. elegans ric-7 mutants, where axonal
mitochondria trafficking is impaired, suggest that mitochon-
dria are important for protection of axons against degeneration
(Rawson et al., 2014). During physiological aging, nematode
touch receptor neurons display morphological and functional
abnormalities, such as neurite outgrowth defects and reduced
number of synapses. Positioning of mitochondria in branches
required for neurite outgrowth and the accumulation of vesicles
in neuronal processes suggests that trafficking deficiency under-
lies these age-related abnormalities (Toth et al., 2012). These
morphological changes of neurons have been associated with a
decline in cognition, learning, and memory during aging (Vohra
et al., 2010; Kimata et al., 2012; Kim et al., 2013; Wang et al.,
2013).

The nematode genome encodes five superoxide dismutases
(SODs) that function in cytoplasm, mitochondria, and extracel-
lularly. Specifically, SOD-1 regulates detoxification of syperoxide
radicals in mitochondria and guards from accumulation of oxida-
tive damage during aging (Harman, 1968; McCord and Fridovich,
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1969; Yanase et al., 2009; Back et al., 2010). Nonetheless, lifes-
pan extension in mutants overexpressing sod-1 is not related with
reduction of oxidative damage (Cabreiro et al., 2011). Transgenic
C. elegans expressing the human G93A SOD1 variant, associated
with familial amyotrophic lateral sclerosis (ALS), in motor neurons
show motor defects and increased autophagy in an age-dependent
manner (Aksenov et al., 2013; Li et al., 2013). SOD-1 overexpres-
sion has also been associated with mitochondrial swelling, and
learning and memory impairment in flies, mice, and humans
(Shin et al., 2004; Perluigi and Butterfield, 2012; Haddadi et al.,
2014). For example, transgenic flies expressing a zinc-deficient
SOD1 mutant display behavioral defects, including impairment
of locomotion, associated with mitochondrial respiratory chain
deficiency and matrix vacuolization, that is not accompanied by
shortening of lifespan (Bahadorani et al., 2013). Moreover, SOD-
1 activity and expression levels decline during normal aging of
Drosophila. At the same time, knock-down of sod-1 in the mush-
room bodies deteriorates mid-term memory and LTM. These
memory defects associate with reduced synapse formation and
mitochondrial damage during Drosophila aging (Haddadi et al.,
2014).

Converging evidence implicates members of the antiapoptotic
BCL-2 family of proteins in neuronal injury and synapse deforma-
tion, through impairment of mitochondrial dynamics (Berman
et al., 2009). CED-9, the C. elegans homolog of BCL-2, interacts
with the mitofusin FZO-1 and the dymanin related protein EAT-3
to promote mitochondrial fusion under specific conditions. The
C. elegans eat-3 encodes a homolog of human OPA-1 which is asso-
ciated with Dominant Optic Atrophy disorder (Breckenridge et al.,
2009; Rolland et al., 2009). In Drosophila, the BCL-2 homologous
proteins, Buffy and Debcl are involved in the permeabilization
of mitochondria to cytochrome-c that is mediated by pro-death
mitochondrial proteins including Reaper and Hid (Abdelwahid
et al., 2011). Unlike in worms, Buffy inhibition results in normal
flies, while knockdown of Debcl protects against polyglutamine
(polyQ)-induced neurodegeneration through maintaining mito-
chondrial homeostasis. The Debcl ortholog in mice, Bax/Bak,
was found to regulate neurogenesis in adult brain regions such as
hippocampus and cerebellum and promote discrimination learn-
ing without affecting significantly spatial memory and learning
(Senoo-Matsuda et al., 2005; Galindo et al., 2009; Sahay et al., 2011;
Hardwick and Soane, 2013).

Neurons are particularly vulnerable to mitochondrial dys-
function. Interestingly, expression of the human mitochondrial
uncoupling protein (UCP) ucp2 in Drosophila dopaminergic neu-
rons increases ATP production and locomotion activity, and
results in neuroprotection against pathogenic stress associated
with PD (Islam et al., 2012). Beyond neurons, enhanced expres-
sion of mitochondria UCPs in flies ameliorates HD phenotypes
in glia cells by moderating ROS and ATP production (Besson
et al., 2010). In C. elegans, depletion of UCP-4 exacerbates neu-
ronal toxicity in animals expressing an expanded polyQ repeat
protein in touch neurons, suggesting that similarly to flies, under
normal conditions UCP-4 protects from neuronal injuries in
worms (Parker et al., 2012). However, overexpression of ucp-
4 in worms does not extend lifespan (Sagi and Kim, 2012).
Alterations in the expression of mitochondrial respiratory chain

genes result in similar effects. For example, mutations in the
mev-1 and gas-1 genes, encoding subunits of complex II and
I of the respiratory chain, respectively, increase ROS produc-
tion, shorten lifespan, and retard behavioral rates (Kayser et al.,
2004). In another example, animals carrying mutations in mito-
chondria complex IV sft-1 gene, show increased lifespan that
is dependent on DAF-16 (Maxwell et al., 2013). Depletion of
SURF1, the mouse ortholog of sft-1, also increases lifespan
and improves cognitive function in mice (Lin et al., 2013a).
Knockdown of clk-1, a gene required for ubiquinone biosyn-
thesis reduces respiration rates and increases C. elegans lifespan,
also delaying behavioral rates (Rea et al., 2007). Loss-of-function
mutations in clk-1 extend lifespan and slow development and
behavioral rates (Takahashi et al., 2012). Similarly, knockdown
of the mouse clk-1 ortholog causes mild mitochondrial dysfunc-
tion and extends lifespan (Lapointe and Hekimi, 2008; Deepa
et al., 2013). In Drosophila, reduced expression of complex I
and IV genes specifically in adult neurons is sufficient to extend
lifespan (Copeland et al., 2009). Furthermore, observations in clk-
1 mutants indicate that neurite outgrowth is inhibited in aged
worms (Tank et al., 2011). The association between neuronal
morphology and behavioral effects suggests that mitochondria
dysfunction may, in part, underlie memory and learning decline
during aging (Ardiel and Rankin, 2010; Kimata et al., 2012;
Stein and Murphy, 2012). However, little is known about the
molecular mechanisms that mediate the effects of alterations
in mitochondrial metabolism on both cognitive capacity and
longevity.

AUTOPHAGY AND PROTEIN HOMEOSTASIS IN LEARNING
AND MEMORY
The autophagic pathway has also been implicated in aging and
cognitive decline. Autophagic activity decreases during the course
of aging and genes that control this process are strongly associated
with lifespan regulation in flies and worms (Lionaki et al., 2013).
In Drosophila, overexpression of autophagy-related genes in neu-
rons enhances longevity, while their repression causes neuronal
defects and shortening of lifespan (Simonsen et al., 2008). Simi-
larly, increasing autophagy mediates lifespan extension in worms
(Hansen et al., 2008). UNC-51, a nematode autophagy regulator
also controls axonal and dendritic development and its homolog
affects olfactory learning in flies (Mochizuki et al., 2011). Worms
lacking UNC-51 display axonal membrane defects, indicating a
role of autophagy in synaptic plasticity, which indirectly interferes
with learning and memory (Sigmond et al., 2008; Ragagnin et al.,
2013). In Drosophila, inhibition of the cyclin-dependent kinase 5
(cdk5) kinase ortholog decreases autophagy, shortens lifespan and
causes structural defects in central brain regions associated with
olfactory learning and memory (Trunova and Giniger, 2012). In
both flies and worms, autophagy deficiency leads to abnormal
accumulation of protein aggregates thus promoting pathological
mechanisms associated with neurodegenerative disorders, such as
HD and AD (Ling et al., 2009; Low et al., 2013). For example,
accumulation of intracellular APL-1, a β-amyloid precursor pro-
tein, upon autophagy impairment, causes behavioral deficiencies,
including olfactory and gustatory learning defects, and habitu-
ation delay in C. elegans (Ewald et al., 2012; Ewald and Li, 2012;
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Chen et al., 2013). Accumulation of APL-1 also occurs during nor-
mal aging and can reach pathological levels contributing to the
pathogenesis of AD (Nilsson et al., 2013).

Age-induced memory impairment studies in Drosophila sug-
gest that cognitive aging is strongly associated with the autophagic
pathway. Indeed, spermidine-induced autophagy reduces aggre-
gation of ubiquitinated proteins and protects from age-related
memory impairment, in the aged Drosophila brain (Gupta et al.,
2013). Spermidine activates autophagy to also promote longevity
in different metazoans ranging from C. elegans to mice (Eisen-
berg et al., 2009; Wang et al., 2012). Other studies suggest that
spermidine may not act directly through autophagy to facilitate
neuroprotection and memory during aging. Instead, spermidine
administration may influence histone acetyltransferase activity to
modulate autophagy (Simonsen and Tooze, 2009; Davis, 2013;
Graff and Tsai, 2013). These findings indicate that although
the protective effect of spermidine does require activation of
the autophagy pathway, the involvement of additional regulatory
pathways remains to be elucidated. In conclusion, the exact mech-
anism by which autophagy controls cognitive aging is multifaceted
and remains poorly understood. Additional studies are required
to elucidate the contribution of autophagy in both longevity and
cognitive capacity maintenance during aging.

TOR SIGNALING AND LONG-TERM MEMORY
Reduced signaling through the target of rapamycin (TOR) kinase
has been shown to extend lifespan in diverse organisms (Vel-
lai et al., 2003; Jia et al., 2004; Kapahi et al., 2004; Kaeberlein
et al., 2005; Powers et al., 2006; Kenyon, 2010). The evolution-
arily conserved mTOR functions in two complexes, mTORC1 and
mTORC2 (Hay and Sonenberg, 2004; Wullschleger et al., 2006;
Guertin and Sabatini, 2007). Tight regulation of the upstream
components of the TOR pathway is important for proper neu-
ral growth and function throughout development and adulthood
in C. elegans (Goldsmith et al., 2010). Overexpression of the small
GTPase RAS homolog enriched in brain (Rheb), an upstream acti-
vator of TOR, in Drosophila photoreceptor cells downregulates
autophagy, causes axon guidance defects and induces cell death
(Knox et al., 2007; Wang et al., 2009). Selective overexpression of
Rheb in distinct subsets of central brain neurons results in enlarged
cell bodies and projections. In addition, Rheb overexpression in
the mushroom bodies decreases mid-term odor-sucrose memory
(Brown et al., 2012).

In the PIP3/PTEN/Akt/TOR pathway phosphorylated Akt acti-
vates TOR to regulate cell cycle and protein synthesis. In flies,
the PTEN/Akt pathway is implicated in axon regeneration (Song
et al., 2012). Similarly, axon regeneration is evident after the loss of
DAF-18/PTEN in young adult worms (Byrne et al., 2014). Reduced
TORC2 activity causes LTM deterioration in fruit flies (Huang
et al., 2013). Rapamycin, a protein synthesis inhibitor that acts
through the TOR pathway (mainly mTORC1), blocks long-term
facilitation (LTF) in Aplysia californica (Hu et al., 2006). Moreover,
rapamycin completely disrupts pre-existing long-term synaptic
plasticity in Aplysia (Hu et al., 2011). While rapamycin extends
lifespan mainly by blocking the TOR pathway, it may exert its
effects on cognition through a different mechanism (Neff et al.,
2013).

The TOR pathway controls translation of 5′TOP mRNAs
containing a 5′ terminal oligopyrimidine tract. 5′TOP mRNAs
encode proteins of the translational machinery. Under physiolog-
ical conditions, 5′TOP mRNAs are largely repressed. Serotonin,
which activates the TOR pathway, aleviates this repression, in a
rapamycin-sensitive manner (Garelick and Kennedy, 2011; Lab-
ban and Sossin, 2011). eEF2 (eukaryotic elongation factor 2) is
implicated in LTF in Aplysia, but is differentially regulated by eEF2
kinase in the neurites and the soma of sensory neurons involved
in LTF (Weatherill et al., 2011). TORC1 mediates regulation of
phosphorylation of eEF2 through the eEF2K (Carroll et al., 2004).
Both in Aplysia, and in rodents, eEF2K function is associated with
increased memory processing, through enhancing expression of
genes implicated in the regulation of syntaptic strength (Weatherill
et al., 2011).

Similarly, long term administration of rapamycin eliminates
neuronal demyelination and neurodegeneration observed during
aging in senescence-accelerated OXYS rats, a strain character-
ized by overproduction of free radicals (Kolosova et al., 2013).
In mouse models of AD, rapamycin administrated either prior
or after the onset of AD symptoms, improves animal cognition,
probably through the preservation of brain vascular integrity
and function (Lin et al., 2013b). Moreover, chronic treatment
with rapamycin enhances spatial learning and memory with
age, as well as the ability to recall a memory, even when the
administration takes place late in life (Halloran et al., 2012).
However, short-term administration following the emergence
of learning and memory defects with aging, is not accompa-
nied by such positive effects. The improvement of cognitive
ability with rapamycin is mediated through reduction of TOR
signaling and of IL-1β levels in the hippocampus, the facilita-
tion of NMDA signaling, and increased CREB phosphorylation
(Majumder et al., 2012). Furthermore, increased phosphorylation
of S6, a target of TOR, is observed in the prefrontal cortex, after
the administration of rapamycin, in OXYS rats (Kolosova et al.,
2013).

CONCLUSION
Understanding how neuronal aging and cognitive impairment are
influenced by mechanisms that modulate lifespan is an ongoing
challenge. Such well-studied mechanisms include the IIS signal-
ing pathway, DR, mitochondrial dysfunction, autophagy, and the
TOR signaling pathway. Accumulating evidence indicates that
these pathways also impinge on age-related neuronal dysfunction
and memory-impairment. Indeed, manipulation of these path-
ways in a variety of metazoans affects neuronal structure and
function and consequently promotes age-related memory impair-
ment. It is likely that the decline in different forms of memory is
independently mediated by distinct aging mechanisms (Figure 1).
Decreased IIS signaling promotes decision making and associative
learning. However this is not a general rule and, instead, appears
to be dependent on different types of association. Nonetheless,
DAF-16 activation likely delays morphological changes that occur
with aging and promotes neuronal regeneration. DR exerts nega-
tive effects on LTM but enhances association making and memory.
DR effects on short-term and mid-term memory appear to be age
dependent.
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FIGURE 1 | Effects of IIS, DR, andTOR signaling, autophagy, and

mitochondrial function on memory formation. In addition to extending
lifespan, attenuation of IIS signaling, and subsequent de-repression of DAF-16
also reinforces associative learning and promotes axon regeneration and
neuronal migration. Dietary restriction significantly impairs long-term
memory, while it does not affect short-term memory. Blocking TOR signaling
causes long-term-facilitation defects, while Rheb overexpression decreases
mid-term memory and causes axon guidance defects. Regulation of
autophagy through Cdk-5 affects lifespan and has also been associated with
central nervous system structure defects, including olfactory learning and
memory. Several mitochondrial genes promote neuroprotection. Impairment
of mitochondrial function causes over production of ROS and concomitant
synaptic deficiency. AGE-1/PI3K,phosphoinositide 3-kinase; AKT, protein

kinase B; Cdk5, cyclin-dependent kinase 5; CLK-1, clock 1; DAF-2/IGFR,
insulin-like growth factor receptor; DAF-16/FOXO, forkhead box O;
DAF-18/PTEN, phosphatase and ensin homolog; DR, dietary restriction; eEF2,
eukaryotic elongation factor 2; eEF2K, eukaryotic elongation factor 2 kinase;
HIF-1, hypoxia-induced factor 1; INS, insulin; LTF, long-term facilitation; LTM,
long-term memory; MTM, mid-term memory; PDK-1,
3-phosphoinositide-dependent kinase 1; PIP2, phosphatidylinositol
(4,5)-bisphosphate; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; Rheb,
Ras homolog enriched in brain; S6K, ribosomal protein S6 kinase; SGK,
serum- and glucocorticoid-inducible kinase; SOD1, superoxide dismutase 1;
TSC1/2, tuberous sclerosis 1/2; TOR, target of rapamycin; UCPs, uncoupling
proteins; Black arrow, direct stimulation; black dashed arrow, indirect
stimulation; black dashed double head arrow, interplay; red arrow, inhibition.

The TOR pathway influences cognition by controlling protein
biosynthesis, cell cycle, and metabolism (Garelick and Kennedy,
2011; Santos et al., 2011). Studies in invertebrates suggest that
increased TOR signaling downregulates autophagy and causes
axon guidance defects, while also promoting memory processing
and synapse integrity. Conversely, in addition to increasing lifes-
pan, downregulation of TOR signaling, mainly through rapamycin
treatment, blocks LTM and LTF but also causes axon regener-
ation. In rodents rapamycin administration offsets the negative
impact of aging on spatial learning and memory, increases mem-
ory recall ability, and enhances the vascular integrity of the brain.

Moreover, morphological signs of AD and aging, such as neuronal
demyelination and neurodegeneration are ameliorated. Activation
of mTORC1 promotes mRNA translation, which likely enhances
synapse formation. These distinct, but not necessarily conflict-
ing results of manipulating TOR signaling could reflect a dose
or compartment dependent regulation of cognition through TOR
signaling.

In both worms and flies, activation of autophagy appears to
promote lifespan and cognitive function. In mammals, little it is
known about the role of autophagy during aging. However, recent
studies in mice suggest that overexpression of autophagy-related
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gene Atg5 also increases lifespan (Pyo et al., 2013). Manipula-
tion of mitochondria function during aging causes similar effects,
either causing axon degeneration, or promoting axon integrity
and stability (Keller et al., 2011; Fang et al., 2012). These osten-
sibly contradictory observations may suggest a neuron-specific
function of mitochondria in aging. Despite recent progress and
findings, several open questions need to be addressed. The involve-
ment of epigenetic mechanisms and environmental conditions on
nervous system aging is largely unknown. In addition, whether
aging differentially affects subpopulations of neurons or different
brain areas and to what extent remains unclear. While significant
progress has been achieved towards deciphering the link between
pathways that modulate both lifespan and aspects of neuronal
function in invertebrate models, the relevance of these findings to
neuronal aging and pathophysiology in higher organisms includ-
ing humans has not been evaluated yet. Addressing these key issues
will contribute towards developing informed strategies and thera-
peutic approaches aiming to battle age-related decline of nervous
system performance and numerous neurodegenerative conditions
associated with aging.

ACKNOWLEDGMENTS
We thank Maria Markaki for discussions and comments on the
manuscript. Work in the authors’ laboratory is funded by grants
from the European Research Council (ERC), the European Com-
mission Framework Programmes, and the Greek Ministry of
Education. Ilias Gkikas is supported by the European Union
Seventh Framework program through the Marie Curie Initial
Training fellowship (Ageing Network – MarriAge). Dionysia Petra-
tou is supported jointly by the European Union (European Social
Fund – ESF) and Greek national program “THALES-MINOS” of
the National Strategic Reference Framework (NSRF).

REFERENCES
Abdelwahid, E., Rolland, S., Teng, X., Conradt, B., Hardwick, J. M., and

White, K. (2011). Mitochondrial involvement in cell death of non-mammalian
eukaryotes. Biochim. Biophys. Acta 1813, 597–607. doi: 10.1016/j.bbamcr.2010.
10.008

Adams, M. M., Shi, L., Linville, M. C., Forbes, M. E., Long, A. B., Bennett,
C., et al. (2008). Caloric restriction and age affect synaptic proteins in hip-
pocampal CA3 and spatial learning ability. Exp. Neurol. 211, 141–149. doi:
10.1016/j.expneurol.2008.01.016

Aksenov, V., Long, J., Liu, J., Szechtman, H., Khanna, P., Matravadia, S., et al.
(2013). A complex dietary supplement augments spatial learning, brain mass,
and mitochondrial electron transport chain activity in aging mice. Age (Dordr.)
35, 23–33. doi: 10.1007/s11357-011-9325-2

Ardiel, E. L., and Rankin, C. H. (2010). An elegant mind: learning and memory in
Caenorhabditis elegans. Learn. Mem. 17, 191–201. doi: 10.1101/lm.960510

Avery, L. (1993). The genetics of feeding in Caenorhabditis elegans. Genetics 133,
897–917.

Back, P., Matthijssens, F., Vlaeminck, C., Braeckman, B. P., and Vanfleteren,
J. R. (2010). Effects of sod gene overexpression and deletion mutation on
the expression profiles of reporter genes of major detoxification pathways in
Caenorhabditis elegans. Exp. Gerontol. 45, 603–610. doi: 10.1016/j.exger.2010.
01.014

Bahadorani, S., Mukai, S. T., Rabie, J., Beckman, J. S., Phillips, J. P., and Hilliker, A. J.
(2013). Expression of zinc-deficient human superoxide dismutase in Drosophila
neurons produces a locomotor defect linked to mitochondrial dysfunction.
Neurobiol. Aging 34, 2322–2330. doi: 10.1016/j.neurobiolaging.2013.03.024

Barco, A., Bailey, C. H., and Kandel, E. R. (2006). Common molecular mech-
anisms in explicit and implicit memory. J. Neurochem. 97, 1520–1533. doi:
10.1111/j.1471-4159.2006.03870.x

Berman, S. B., Chen, Y. B., Qi, B., McCaffery, J. M., Rucker, E. B. III, Goebbels,
S., et al. (2009). Bcl-x L increases mitochondrial fission, fusion, and biomass in
neurons. J. Cell Biol. 184, 707–719. doi: 10.1083/jcb.200809060

Besson, M. T., Dupont, P., Fridell, Y. W., and Lievens, J. C. (2010). Increased energy
metabolism rescues glia-induced pathology in a Drosophila model of Hunting-
ton’s disease. Hum. Mol. Genet. 19, 3372–3382. doi: 10.1093/hmg/ddq249

Bishop, N. A., Lu, T., and Yankner, B. A. (2010). Neural mechanisms of ageing and
cognitive decline. Nature 464, 529–535. doi: 10.1038/nature08983

Bluher, M., Kahn, B. B., and Kahn, C. R. (2003). Extended longevity in mice
lacking the insulin receptor in adipose tissue. Science 299, 572–574. doi:
10.1126/science.1078223

Bokov, A. F., Garg, N., Ikeno, Y., Thakur, S., Musi, N., DeFronzo, R. A., et al.
(2011). Does reduced IGF-1R signaling in Igf1r+/−− mice alter aging? PLoS
ONE 6:e26891. doi: 10.1371/journal.pone.0026891

Breckenridge, D. G., Kang, B. H., and Xue, D. (2009). Bcl-2 proteins EGL-1 and
CED-9 do not regulate mitochondrial fission or fusion in Caenorhabditis elegans.
Curr. Biol. 19, 768–773. doi: 10.1016/j.cub.2009.03.022

Brown, H. L., Kaun, K. R., and Edgar, B. A. (2012). The small GTPase Rheb affects
central brain neuronal morphology and memory formation in Drosophila. PLoS
ONE 7:e44888. doi: 10.1371/journal.pone.0044888

Burger, J. M., Buechel, S. D., and Kawecki, T. J. (2010). Dietary restriction affects
lifespan but not cognitive aging in Drosophila melanogaster. Aging Cell 9, 327–335.
doi: 10.1111/j.1474-9726.2010.00560.x

Byrne, A. B., Walradt, T., Gardner, K. E., Hubbert, A., Reinke, V., and Hammarlund,
M. (2014). Insulin/IGF1 signaling inhibits age-dependent axon regeneration.
Neuron 81, 561–573. doi: 10.1016/j.neuron.2013.11.019

Cabreiro, F., Ackerman, D., Doonan, R., Araiz, C., Back, P., Papp, D., et al. (2011).
Increased life span from overexpression of superoxide dismutase in Caenorhab-
ditis elegans is not caused by decreased oxidative damage. Free Radic. Biol. Med.
51, 1575–1582. doi: 10.1016/j.freeradbiomed.2011.07.020

Carroll, M., Warren, O., Fan, X., and Sossin, W. S. (2004). 5-HT stimulates
eEF2 dephosphorylation in a rapamycin-sensitive manner in Aplysia neurites.
J. Neurochem. 90, 1464–1476. doi: 10.1111/j.1471-4159.2004.02634.x

Cava, E., and Fontana, L. (2013). Will calorie restriction work in humans? Aging
(Albany NY) 5, 507–514.

Chamoli, M., Singh, A., Malik, Y., and Mukhopadhyay, A. (2014). A novel kinase
regulates dietary restriction-mediated longevity in Caenorhabditis elegans. Aging
Cell. doi: 10.1111/acel.12218 [Epub ahead of print].

Chen, C. H., Chen, Y. C., Jiang, H. C., Chen, C. K., and Pan, C. L. (2013). Neuronal
aging: learning from C. elegans. J. Mol. Signal. 8, 14. doi: 10.1186/1750-2187-8-14

Christensen, R., de la Torre-Ubieta, L., Bonni, A., and Colon-Ramos, D. A.
(2011). A conserved PTEN/FOXO pathway regulates neuronal morphology dur-
ing C. elegans development. Development 138, 5257–5267. doi: 10.1242/dev.
069062

Clancy, D. J., Gems, D., Harshman, L. G., Oldham, S., Stocker, H., Hafen, E., et al.
(2001). Extension of life-span by loss of CHICO, a Drosophila insulin receptor
substrate protein. Science 292, 104–106. doi: 10.1126/science.1057991

Cohen, E., Paulsson, J. F., Blinder, P., Burstyn-Cohen, T., Du, D., Estepa, G., et al.
(2009). Reduced IGF-1 signaling delays age-associated proteotoxicity in mice.
Cell 139, 1157–1169. doi: 10.1016/j.cell.2009.11.014

Colman, R. J., Anderson, R. M., Johnson, S. C., Kastman, E. K., Kosmatka, K. J.,
Beasley, T. M., et al. (2009). Caloric restriction delays disease onset and mortality
in rhesus monkeys. Science 325, 201–204. doi: 10.1126/science.1173635

Colman, R. J., Beasley, T. M., Kemnitz, J. W., Johnson, S. C., Weindruch, R.,
and Anderson, R. M. (2014). Caloric restriction reduces age-related and all-
cause mortality in rhesus monkeys. Nat. Commun. 5, 3557. doi: 10.1038/
ncomms4557

Copeland, J. M., Cho, J., Lo, T., Hur, J. H., Bahadorani, S., Arabyan, T., et al. (2009).
Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain.
Curr. Biol. 19, 1591–1598. doi: 10.1016/j.cub.2009.08.016

David, D. C., Ollikainen, N., Trinidad, J. C., Cary, M. P., Burlingame, A. L., and
Kenyon, C. (2010). Widespread protein aggregation as an inherent part of aging
in C. elegans. PLoS Biol. 8:e1000450. doi: 10.1371/journal.pbio.1000450

Davis, R. L. (2013). Spermidine cures flies of senior moments. Nat. Neurosci. 16,
1363–1364. doi: 10.1038/nn.3518

Deepa, S. S., Pulliam, D., Hill, S., Shi, Y., Walsh, M. E., Salmon, A., et al. (2013).
Improved insulin sensitivity associated with reduced mitochondrial complex IV
assembly and activity. FASEB J. 27, 1371–1380. doi: 10.1096/fj.12-221879

www.frontiersin.org June 2014 | Volume 5 | Article 155 | 7

http://www.frontiersin.org/
http://www.frontiersin.org/Genetics_of_Aging/archive


Gkikas et al. Learning and memory decline during aging

Eisenberg, T., Knauer, H., Schauer, A., Buttner, S., Ruckenstuhl, C., Carmona-
Gutierrez, D., et al. (2009). Induction of autophagy by spermidine promotes
longevity. Nat. Cell Biol. 11, 1305–1314. doi: 10.1038/ncb1975

Ewald, C. Y., Cheng, R., Tolen, L., Shah, V., Gillani, A., Nasrin, A., et al. (2012).
Pan-neuronal expression of APL-1, an APP-related protein, disrupts olfactory,
gustatory, and touch plasticity in Caenorhabditis elegans. J. Neurosci. 32, 10156–
10169. doi: 10.1523/JNEUROSCI.0495-12.2012

Ewald, C. Y., and Li, C. (2012). Caenorhabditis elegans as a model organism to study
APP function. Exp. Brain Res. 217, 397–411. doi: 10.1007/s00221-011-2905-7

Fang,Y., Soares, L., Teng, X., Geary, M., and Bonini, N. M. (2012). A novel Drosophila
model of nerve injury reveals an essential role of Nmnat in maintaining axonal
integrity. Curr. Biol. 22, 590–595. doi: 10.1016/j.cub.2012.01.065

Florez-McClure, M. L., Hohsfield, L. A., Fonte, G., Bealor, M. T., and Link,
C. D. (2007). Decreased insulin-receptor signaling promotes the autophagic
degradation of beta-amyloid peptide in C. elegans. Autophagy 3, 569–580.

Galindo, K. A., Lu, W. J., Park, J. H., and Abrams, J. M. (2009). The Bax/Bak
ortholog in Drosophila, Debcl, exerts limited control over programmed cell death.
Development 136, 275–283. doi: 10.1242/dev.019042

Garelick, M. G., and Kennedy, B. K. (2011). TOR on the brain. Exp. Gerontol. 46,
155–163. doi: 10.1016/j.exger.2010.08.030

Goldsmith, A. D., Sarin, S., Lockery, S., and Hobert, O. (2010). Developmental
control of lateralized neuron size in the nematode Caenorhabditis elegans. Neural
Dev. 5, 33. doi: 10.1186/1749-8104-5-33

Graff, J., and Tsai, L. H. (2013). Histone acetylation: molecular mnemonics on the
chromatin. Nat. Rev. Neurosci. 14, 97–111. doi: 10.1038/nrn3427

Guertin, D. A., and Sabatini, D. M. (2007). Defining the role of mTOR in cancer.
Cancer Cell 12, 9–22. doi: 10.1016/j.ccr.2007.05.008

Gupta, V. K., Scheunemann, L., Eisenberg, T., Mertel, S., Bhukel, A., Koemans,
T. S., et al. (2013). Restoring polyamines protects from age-induced memory
impairment in an autophagy-dependent manner. Nat. Neurosci. 16, 1453–1460.
doi: 10.1038/nn.3512

Haddadi, M., Jahromi, S. R., Sagar, B. K., Patil, R. K., Shivanandappa, T.,
and Ramesh, S. R. (2014). Brain aging, memory impairment and oxidative
stress: a study in Drosophila melanogaster. Behav. Brain Res. 259, 60–69. doi:
10.1016/j.bbr.2013.10.036

Halloran, J., Hussong, S. A., Burbank, R., Podlutskaya, N., Fischer, K. E.,
Sloane, L. B., et al. (2012). Chronic inhibition of mammalian target of
rapamycin by rapamycin modulates cognitive and non-cognitive components
of behavior throughout lifespan in mice. Neuroscience 223, 102–113. doi:
10.1016/j.neuroscience.2012.06.054

Hansen, M., Chandra, A., Mitic, L. L., Onken, B., Driscoll, M., and
Kenyon, C. (2008). A role for autophagy in the extension of lifespan by
dietary restriction in C. elegans. PLoS Genet. 4:e24. doi: 10.1371/journal.pgen.
0040024

Hardwick, J. M., and Soane, L. (2013). Multiple functions of BCL-2 family proteins.
Cold Spring Harb. Perspect. Biol. 5. doi: 10.1101/cshperspect.a008722

Harman, D. (1968). Free radical theory of aging: effect of free radical reaction
inhibitors on the mortality rate of male LAF mice. J. Gerontol. 23, 476–482. doi:
10.1093/geronj/23.4.476

Hay, N., and Sonenberg, N. (2004). Upstream and downstream of mTOR. Genes
Dev. 18, 1926–1945. doi: 10.1101/gad.1212704

Hu, J. Y., Baussi, O., Levine, A., Chen, Y., and Schacher, S. (2011). Persistent
long-term synaptic plasticity requires activation of a new signaling pathway by
additional stimuli. J. Neurosci. 31, 8841–8850. doi: 10.1523/JNEUROSCI.1358-
11.2011

Hu, J. Y., Wu, F., and Schacher, S. (2006). Two signaling pathways regulate the
expression and secretion of a neuropeptide required for long-term facilitation in
Aplysia. J. Neurosci. 26, 1026–1035. doi: 10.1523/JNEUROSCI.4258-05.2006

Huang, W., Zhu, P. J., Zhang, S., Zhou, H., Stoica, L., Galiano, M., et al. (2013).
mTORC2 controls actin polymerization required for consolidation of long-term
memory. Nat. Neurosci. 16, 441–448. doi: 10.1038/nn.3351

Islam, R., Yang, L., Sah, M., Kannan, K., Anamani, D., Vijayan, C., et al.
(2012). A neuroprotective role of the human uncoupling protein 2 (hUCP2)
in a Drosophila Parkinson’s disease model. Neurobiol. Dis. 46, 137–146. doi:
10.1016/j.nbd.2011.12.055

Jia, K., Chen, D., and Riddle, D. L. (2004). The TOR pathway interacts with the
insulin signaling pathway to regulate C. elegans larval development, metabolism
and life span. Development 131, 3897–3906. doi: 10.1242/dev.01255

Jiu, Y. M., Yue, Y., Yang, S., Liu, L., Yu, J. W., Wu, Z. X., et al. (2010). Insulin-like
signaling pathway functions in integrative response to an olfactory and a gustatory
stimuli in Caenorhabditis elegans. Protein Cell 1, 75–81. doi: 10.1007/s13238-010-
0003-4

Kaeberlein, M., Powers, R. W. III, Steffen, K. K., Westman, E. A., Hu, D., Dang, N.,
et al. (2005). Regulation of yeast replicative life span by TOR and Sch9 in response
to nutrients. Science 310, 1193–1196. doi: 10.1126/science.1115535

Kapahi, P., Zid, B. M., Harper, T., Koslover, D., Sapin, V., and Benzer, S. (2004).
Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling
pathway. Curr. Biol. 14, 885–890. doi: 10.1016/j.cub.2004.03.059

Kauffman, A. L., Ashraf, J. M., Corces-Zimmerman, M. R., Landis, J. N., and
Murphy, C. T. (2010). Insulin signaling and dietary restriction differentially influ-
ence the decline of learning and memory with age. PLoS Biol. 8:e1000372. doi:
10.1371/journal.pbio.1000372

Kayser, E. B., Sedensky, M. M., Morgan, P. G., and Hoppel, C. L. (2004). Mitochon-
drial oxidative phosphorylation is defective in the long-lived mutant clk-1. J. Biol.
Chem. 279, 54479–54486. doi: 10.1074/jbc.M403066200

Keller, L. C., Cheng, L., Locke, C. J., Muller, M., Fetter, R. D., and Davis, G. W.
(2011). Glial-derived prodegenerative signaling in the Drosophila neuromuscular
system. Neuron 72, 760–775. doi: 10.1016/j.neuron.2011.09.031

Kennedy, L. M., Pham, S. C., and Grishok, A. (2013). Nonautonomous regulation
of neuronal migration by insulin signaling, DAF-16/FOXO, and PAK-1. Cell Rep.
4, 996–1009. doi: 10.1016/j.celrep.2013.07.045

Kenyon, C., Chang, J., Gensch, E., Rudner, A., and Tabtiang, R. (1993). A C.
elegans mutant that lives twice as long as wild type. Nature 366, 461–464. doi:
10.1038/366461a0

Kenyon, C. J. (2010). The genetics of ageing. Nature 464, 504–512. doi:
10.1038/nature08980

Keowkase, R., Aboukhatwa, M., and Luo, Y. (2010). Fluoxetine protects
against amyloid-beta toxicity, in part via daf-16 mediated cell signaling
pathway, in Caenorhabditis elegans. Neuropharmacology 59, 358–365. doi:
10.1016/j.neuropharm.2010.04.008

Kim, G. W., Li, L., Gorbani, M., You, L., and Yang, X. J. (2013). Mice lacking
alpha-tubulin acetyltransferase 1 are viable but display alpha-tubulin acetylation
deficiency and dentate gyrus distortion. J. Biol. Chem. 288, 20334–20350. doi:
10.1074/jbc.M113.464792

Kimata, T., Sasakura, H., Ohnishi, N., Nishio, N., and Mori, I. (2012). Thermo-
taxis of C. elegans as a model for temperature perception, neural information
processing and neural plasticity. Worm 1, 31–41. doi: 10.4161/worm.19504

Knox, S., Ge, H., Dimitroff, B. D., Ren, Y., Howe, K. A., Arsham, A. M., et al. (2007).
Mechanisms of TSC-mediated control of synapse assembly and axon guidance.
PLoS ONE 2:e375. doi: 10.1371/journal.pone.0000375

Kodama, E., Kuhara, A., Mohri-Shiomi, A., Kimura, K. D., Okumura, M., Tomioka,
M., et al. (2006). Insulin-like signaling and the neural circuit for integrative
behavior in C. elegans. Genes Dev. 20, 2955–2960. doi: 10.1101/gad.1479906

Kolosova, N. G., Vitovtov, A. O., Muraleva, N. A., Akulov, A. E., Stefanova, N. A.,
and Blagosklonny, M. V. (2013). Rapamycin suppresses brain aging in senescence-
accelerated OXYS rats. Aging (Albany NY) 5, 474–484.

Labban, M., and Sossin, W. S. (2011). Translation of 5′ terminal oligopyrim-
idine tract (5′TOP) mRNAs in Aplysia californica is regulated by the target
of rapamycin (TOR). Biochem. Biophys. Res. Commun. 404, 816–821. doi:
10.1016/j.bbrc.2010.12.066

Lakowski, B., and Hekimi, S. (1998). The genetics of caloric restriction in
Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 95, 13091–13096. doi:
10.1073/pnas.95.22.13091

Lapointe, J., and Hekimi, S. (2008). Early mitochondrial dysfunction in long-lived
Mclk1+/−− mice. J. Biol. Chem. 283, 26217–26227. doi: 10.1074/jbc.M803287200

Li, J., Huang, K. X., and Le, W. D. (2013). Establishing a novel C. elegans model to
investigate the role of autophagy in amyotrophic lateral sclerosis. Acta pharmacol.
Sin. 34, 644–650. doi: 10.1038/aps.2012.190

Lin, A. L., Pulliam, D. A., Deepa, S. S., Halloran, J. J., Hussong, S. A., Bur-
bank, R. R., et al. (2013a). Decreased in vitro mitochondrial function is
associated with enhanced brain metabolism, blood flow, and memory in Surf1-
deficient mice. J. Cereb. Blood Flow Metab. 33, 1605–1611. doi: 10.1038/jcbfm.
2013.116

Lin, A. L., Zheng, W., Halloran, J. J., Burbank, R. R., Hussong, S. A., Hart, M. J.,
et al. (2013b). Chronic rapamycin restores brain vascular integrity and function
through NO synthase activation and improves memory in symptomatic mice

Frontiers in Genetics | Genetics of Aging June 2014 | Volume 5 | Article 155 | 8

http://www.frontiersin.org/Genetics_of_Aging/
http://www.frontiersin.org/Genetics_of_Aging/archive


Gkikas et al. Learning and memory decline during aging

modeling Alzheimer’s disease. J. Cereb. Blood Flow Metab. 33, 1412–1421. doi:
10.1038/jcbfm.2013.82

Lin, C. H., Tomioka, M., Pereira, S., Sellings, L., Iino, Y., and van der
Kooy, D. (2010). Insulin signaling plays a dual role in Caenorhabditis elegans
memory acquisition and memory retrieval. J. Neurosci. 30, 8001–8011. doi:
10.1523/JNEUROSCI.4636-09.2010

Ling, D., Song, H. J., Garza, D., Neufeld, T. P., and Salvaterra, P. M. (2009). Abeta42-
induced neurodegeneration via an age-dependent autophagic-lysosomal injury
in Drosophila. PLoS ONE 4:e4201. doi: 10.1371/journal.pone.0004201

Lionaki, E., Markaki, M., and Tavernarakis, N. (2013). Autophagy and ageing:
insights from invertebrate model organisms. Ageing Res. Rev. 12, 413–428. doi:
10.1016/j.arr.2012.05.001

Low, P., Varga, A., Pircs, K., Nagy, P., Szatmari, Z., Sass, M., et al. (2013). Impaired
proteasomal degradation enhances autophagy via hypoxia signaling in Drosophila.
BMC Cell Biol. 14, 29. doi: 10.1186/1471-2121-14-29

Mair, W., and Dillin, A. (2008). Aging and survival: the genetics of life span
extension by dietary restriction. Annu. Rev. Biochem. 77, 727–754. doi:
10.1146/annurev.biochem.77.061206.171059

Majumder, S., Caccamo, A., Medina, D. X., Benavides, A. D., Javors, M. A., Kraig,
E., et al. (2012). Lifelong rapamycin administration ameliorates age-dependent
cognitive deficits by reducing IL-1beta and enhancing NMDA signaling. Aging
Cell 11, 326–335. doi: 10.1111/j.1474-9726.2011.00791.x

Masoro, E. J. (2005). Overview of caloric restriction and ageing. Mech. Ageing Dev.
126, 913–922. doi: 10.1016/j.mad.2005.03.012

Mattison, J. A., Roth, G. S., Beasley, T. M., Tilmont, E. M., Handy, A. M., Her-
bert, R. L., et al. (2012). Impact of caloric restriction on health and survival
in rhesus monkeys from the NIA study. Nature 489, 318–321. doi: 10.1038/
nature11432

Maxwell, S., Harding, J., Brabin, C., Appleford, P. J., Brown, R., Delaney, C., et al.
(2013). The SFT-1 and OXA-1 respiratory chain complex assembly factors influ-
ence lifespan by distinct mechanisms in C. elegans. Longev. Healthspan 2, 9. doi:
10.1186/2046-2395-2-9

McCord, J. M., and Fridovich, I. (1969). Superoxide dismutase. An enzymic function
for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055.

Mochizuki, H., Toda, H., Ando, M., Kurusu, M., Tomoda, T., and Furukubo-
Tokunaga, K. (2011). Unc-51/ATG1 controls axonal and dendritic development
via kinesin-mediated vesicle transport in the Drosophila brain. PLoS ONE
6:e19632. doi: 10.1371/journal.pone.0019632

Murakami, H., Bessinger, K., Hellmann, J., and Murakami, S. (2005). Aging-
dependent and -independent modulation of associative learning behavior by
insulin/insulin-like growth factor-1 signal in Caenorhabditis elegans. J. Neurosci.
25, 10894–10904. doi: 10.1523/JNEUROSCI.3600-04.2005

Murakami, S. (2007). Caenorhabditis elegans as a model system to study
aging of learning and memory. Mol. Neurobiol. 35, 85–94. doi: 10.1007/
BF02700625

Neff, F., Flores-Dominguez, D., Ryan, D. P., Horsch, M., Schroder, S., Adler, T.,
et al. (2013). Rapamycin extends murine lifespan but has limited effects on aging.
J. Clin. Invest. 123, 3272–3291. doi: 10.1172/JCI67674

Neumann, B., and Hilliard, M. A. (2014). Loss of MEC-17 Leads to micro-
tubule instability and axonal degeneration. Cell Rep. 6, 93–103. doi:
10.1016/j.celrep.2013.12.004

Nilsson, P., Loganathan, K., Sekiguchi, M., Matsuba, Y., Hui, K., Tsubuki, S., et al.
(2013). Abeta secretion and plaque formation depend on autophagy. Cell Rep. 5,
61–69. doi: 10.1016/j.celrep.2013.08.042

Panowski, S. H., Wolff, S., Aguilaniu, H., Durieux, J., and Dillin, A. (2007). PHA-
4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447,
550–555. doi: 10.1038/nature05837

Parker, J. A.,Vazquez-Manrique, R. P., Tourette, C., Farina, F., Offner, N., Mukhopad-
hyay, A., et al. (2012). Integration of beta-catenin, sirtuin, and FOXO signaling
protects from mutant huntingtin toxicity. J. Neurosci. 32, 12630–12640. doi:
10.1523/JNEUROSCI.0277-12.2012

Partridge, L. (2010). The new biology of ageing. Philos. Trans. R. Soc. Lond. B Biol.
Sci. 365, 147–154. doi: 10.1098/rstb.2009.0222

Perluigi, M., and Butterfield, D. A. (2012). Oxidative stress and Down syndrome: a
route toward Alzheimer-like dementia. Curr. Gerontol. Geriatr. Res. 2012, 724904.
doi: 10.1155/2012/724904

Piper, M. D., and Bartke, A. (2008). Diet and aging. Cell Metab. 8, 99–104. doi:
10.1016/j.cmet.2008.06.012

Powers, R. W. III, Kaeberlein, M., Caldwell, S. D., Kennedy, B. K., and Fields, S.
(2006). Extension of chronological life span in yeast by decreased TOR pathway
signaling. Genes Dev. 20, 174–184. doi: 10.1101/gad.1381406

Pyo, J. O., Yoo, S. M., Ahn, H. H., Nah, J., Hong, S. H., Kam, T. I., et al. (2013).
Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat.
Commun. 4, 2300. doi: 10.1038/ncomms3300

Ragagnin, A., Guillemain, A., Grant, N. J., and Bailly, Y. J. R. (2013). “Neuronal
autophagy and prion proteins,” in Autophagy - A Double-Edged Sword - Cell
Survival or Death?, ed. Y. Bailly (Croatia: InTech), 377–419.

Raizen, D. M., Lee, R. Y., and Avery, L. (1995). Interacting genes required for
pharyngeal excitation by motor neuron MC in Caenorhabditis elegans. Genetics
141, 1365–1382.

Rawson, R. L., Yam, L., Weimer, R. M., Bend, E. G., Hartwieg, E., Horvitz, H. R.,
et al. (2014). Axons degenerate in the absence of mitochondria in C. elegans. Curr.
Biol. 24, 760–765. doi: 10.1016/j.cub.2014.02.025

Rea, S. L., Ventura, N., and Johnson, T. E. (2007). Relationship between
mitochondrial electron transport chain dysfunction, development, and life exten-
sion in Caenorhabditis elegans. PLoS Biol. 5:e259. doi: 10.1371/journal.pbio.
0050259

Rolland, S. G., Lu, Y., David, C. N., and Conradt, B. (2009). The BCL-2-like pro-
tein CED-9 of C. elegans promotes FZO-1/Mfn1,2- and EAT-3/Opa1-dependent
mitochondrial fusion. J. Cell Biol. 186, 525–540. doi: 10.1083/jcb.200905070

Sagi, D., and Kim, S. K. (2012). An engineering approach to extending lifespan in
C. elegans. PLoS Genet. 8:e1002780. doi: 10.1371/journal.pgen.1002780

Sahay, A., Scobie, K. N., Hill, A. S., O’Carroll, C. M., Kheirbek, M. A., Burghardt,
N. S., et al. (2011). Increasing adult hippocampal neurogenesis is sufficient to
improve pattern separation. Nature 472, 466–470. doi: 10.1038/nature09817

Santos, R. X., Correia, S. C., Cardoso, S., Carvalho, C., Santos, M. S., and
Moreira, P. I. (2011). Effects of rapamycin and TOR on aging and mem-
ory: implications for Alzheimer’s disease. J. Neurochem. 117, 927–936. doi:
10.1111/j.1471-4159.2011.07262.x

Senoo-Matsuda, N., Igaki, T., and Miura, M. (2005). Bax-like protein Drob-1
protects neurons from expanded polyglutamine-induced toxicity in Drosophila.
EMBO J. 24, 2700–2713. doi: 10.1038/sj.emboj.7600721

Shin, J. H., London, J., Le Pecheur, M., Hoger, H., Pollak, D., and Lubec,
G. (2004). Aberrant neuronal and mitochondrial proteins in hippocam-
pus of transgenic mice overexpressing human Cu/Zn superoxide dismutase
1. Free Radic. Biol. Med. 37, 643–653. doi: 10.1016/j.freeradbiomed.2004.
05.019

Sigmond, T., Feher, J., Baksa, A., Pasti, G., Palfia, Z., Takacs-Vellai, K., et al.
(2008). Qualitative and quantitative characterization of autophagy in Caenorhab-
ditis elegans by electron microscopy. Methods Enzymol. 451, 467–491. doi:
10.1016/S0076-6879(08)03228-X

Simonsen, A., Cumming, R. C., Brech, A., Isakson, P., Schubert, D. R., and Finley, K.
D. (2008). Promoting basal levels of autophagy in the nervous system enhances
longevity and oxidant resistance in adult Drosophila. Autophagy 4, 176–184.

Simonsen, A., and Tooze, S. A. (2009). Coordination of membrane events during
autophagy by multiple class III PI3-kinase complexes. J. Cell Biol. 186, 773–782.
doi: 10.1083/jcb.200907014

Song, Y., Ori-McKenney, K. M., Zheng, Y., Han, C., Jan, L. Y., and Jan, Y. N. (2012).
Regeneration of Drosophila sensory neuron axons and dendrites is regulated by the
Akt pathway involving Pten and microRNA bantam. Genes Dev. 26, 1612–1625.
doi: 10.1101/gad.193243.112

Stein, G. M., and Murphy, C. T. (2012). The intersection of aging, longevity
pathways, and learning and memory in C. elegans. Front. Genet. 3:259. doi:
10.3389/fgene.2012.00259

Suh, Y., Atzmon, G., Cho, M. O., Hwang, D., Liu, B., Leahy, D. J., et al.
(2008). Functionally significant insulin-like growth factor I receptor muta-
tions in centenarians. Proc. Natl. Acad. Sci. U.S.A. 105, 3438–3442. doi:
10.1073/pnas.0705467105

Takahashi, M., Ogawara, M., Shimizu, T., and Shirasawa, T. (2012). Restora-
tion of the behavioral rates and lifespan in clk-1 mutant nematodes in
response to exogenous coenzyme Q(10). Exp. Gerontol. 47, 276–279. doi:
10.1016/j.exger.2011.12.012

Tamura, T., Sone, M., Nakamura, Y., Shimamura, T., Imoto, S., Miyano, S., et al.
(2013). A restricted level of PQBP1 is needed for the best longevity of Drosophila.
Neurobiol. Aging 34, 356.e311–356.e320. doi: 10.1016/j.neurobiolaging.2012.
07.015

www.frontiersin.org June 2014 | Volume 5 | Article 155 | 9

http://www.frontiersin.org/
http://www.frontiersin.org/Genetics_of_Aging/archive


Gkikas et al. Learning and memory decline during aging

Tank, E. M. H., Rodgers, K. E., and Kenyon, C. (2011). Spontaneous age-related
neurite branching in Caenorhabditis elegans. J. Neurosci. 31, 9279–9288. doi:
10.1523/JNEUROSCI.6606-10.2011

Tatar, M., Kopelman, A., Epstein, D., Tu, M. P., Yin, C. M., and Garofalo, R. S. (2001).
A mutant Drosophila insulin receptor homolog that extends life-span and impairs
neuroendocrine function. Science 292, 107–110. doi: 10.1126/science.1057987

Tomioka, M., Adachi, T., Suzuki, H., Kunitomo, H., Schafer, W. R., and Iino, Y.
(2006). The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in
Caenorhabditis elegans. Neuron 51, 613–625. doi: 10.1016/j.neuron.2006.07.024

Toth, M. L., Melentijevic, I., Shah, L., Bhatia, A., Lu, K., Talwar, A., et al. (2012).
Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans
nervous system. J. Neurosci. 32, 8778–8790. doi: 10.1523/JNEUROSCI.1494-
11.2012

Trunova, S., and Giniger, E. (2012). Absence of the Cdk5 activator p35 causes adult-
onset neurodegeneration in the central brain of Drosophila. Dis. Model. Mech. 5,
210–219. doi: 10.1242/dmm.008847

Vellai, T., McCulloch, D., Gems, D., and Kovacs, A. L. (2006). Effects of sex
and insulin/insulin-like growth factor-1 signaling on performance in an asso-
ciative learning paradigm in Caenorhabditis elegans. Genetics 174, 309–316. doi:
10.1534/genetics.106.061499

Vellai, T., Takacs-Vellai, K., Zhang, Y., Kovacs, A. L., Orosz, L., and Muller, F. (2003).
Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426, 620. doi:
10.1038/426620a

Vohra, B. P., Sasaki, Y., Miller, B. R., Chang, J., DiAntonio, A., and Milbrandt,
J. (2010). Amyloid precursor protein cleavage-dependent and -independent
axonal degeneration programs share a common nicotinamide mononucleotide
adenylyltransferase 1-sensitive pathway. J. Neurosci. 30, 13729–13738. doi:
10.1523/JNEUROSCI.2939-10.2010

Wang, I. F., Guo, B. S., Liu, Y. C., Wu, C. C., Yang, C. H., Tsai, K. J., et al. (2012).
Autophagy activators rescue and alleviate pathogenesis of a mouse model with
proteinopathies of the TAR DNA-binding protein 43. Proc. Natl. Acad. Sci. U.S.A.
109, 15024–15029. doi: 10.1073/pnas.1206362109

Wang, T., Lao, U., and Edgar, B. A. (2009). TOR-mediated autophagy regulates cell
death in Drosophila neurodegenerative disease. J. Cell Biol. 186, 703–711. doi:
10.1083/jcb.200904090

Wang, Y., Yin, H., Li, J., Zhang, Y., Han, B., Zeng, Z., et al. (2013). Amelio-
ration of beta-amyloid-induced cognitive dysfunction and hippocampal axon
degeneration by curcumin is associated with suppression of CRMP-2 hyper-
phosphorylation. Neurosci. Lett. 557(Pt B), 112–117. doi: 10.1016/j.neulet.2013.
10.024

Weatherill, D. B., McCamphill, P. K., Pethoukov, E., Dunn, T. W., Fan, X., and
Sossin, W. S. (2011). Compartment-specific, differential regulation of eukaryotic
elongation factor 2 and its kinase within Aplysia sensory neurons. J. Neurochem.
117, 841–855. doi: 10.1111/j.1471-4159.2011.07251.x

Wullschleger, S., Loewith, R., and Hall, M. N. (2006). TOR signaling in growth and
metabolism. Cell 124, 471–484. doi: 10.1016/j.cell.2006.01.016

Yanase, S., Onodera, A., Tedesco, P., Johnson, T. E., and Ishii, N. (2009). SOD-1
deletions in Caenorhabditis elegans alter the localization of intracellular reactive
oxygen species and show molecular compensation. J. Gerontol. A Biol. Sci. Med.
Sci. 64, 530–539. doi: 10.1093/gerona/glp020

Zhang, T., Mullane, P. C., Periz, G., and Wang, J. (2011). TDP-43 neurotoxicity and
protein aggregation modulated by heat shock factor and insulin/IGF-1 signaling.
Hum. Mol. Genet. 20, 1952–1965. doi: 10.1093/hmg/ddr076

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 27 March 2014; paper pending published: 22 April 2014; accepted: 10 May
2014; published online: 04 June 2014.
Citation: Gkikas I, Petratou D and Tavernarakis N (2014) Longevity pathways and
memory aging. Front. Genet. 5:155. doi: 10.3389/fgene.2014.00155
This article was submitted to Genetics of Aging, a section of the journal Frontiers in
Genetics.
Copyright © 2014 Gkikas, Petratou and Tavernarakis. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal is cited,
in accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Genetics | Genetics of Aging June 2014 | Volume 5 | Article 155 | 10

http://dx.doi.org/10.3389/fgene.2014.00155
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Genetics_of_Aging/
http://www.frontiersin.org/Genetics_of_Aging/archive

	Longevity pathways and memory aging
	Introduction
	Reduced insulin/igf-1 signaling promotes learning ability during aging
	Dietary restriction and long-term memory
	Mitochondrial function and cognitive aging
	Autophagy and protein homeostasis in learning and memory
	Tor signaling and long-term memory
	Conclusion
	Acknowledgments
	References


