Mitophagy: In sickness and in health

Konstantinos Palikaras, Eirini Lionaki & Nektarios Tavernarakis

To cite this article: Konstantinos Palikaras, Eirini Lionaki & Nektarios Tavernarakis (2016) Mitophagy: In sickness and in health, Molecular & Cellular Oncology, 3:1, e1056332, DOI: 10.1080/23723556.2015.1056332

To link to this article: http://dx.doi.org/10.1080/23723556.2015.1056332

Accepted author version posted online: 10 Jun 2015.

Submit your article to this journal

Article views: 15

View related articles

View Crossmark data
Mitophagy: In sickness and in health

Konstantinos Palikarasa,b, Eirini Lionakia, and Nektarios Tavernarakisa,c

aInstitute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece; bDepartment of Biology, University of Crete, Heraklion, Crete, Greece; cDepartment of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion 70013, Crete, Greece

\textbf{ABSTRACT}

Mitophagy is a conserved, mitochondria-specific autophagic clearance process. We recently discovered an intricate regulatory network that balances mitophagy with mitochondrial biogenesis. Proper coordination of these opposing processes is important for stress resistance and longevity. Nodal regulatory factors that contribute to mitochondrial homeostasis have also been linked to carcinogenesis, highlighting mitophagy as a potential target for therapeutic interventions against cancer.

Macroautophagy, hereafter referred to as autophagy, is a highly conserved lysosomal degradation process targeting large and possibly toxic structures, including protein aggregates, organelles, or pathogens. Mitochondria-selective autophagy (mitophagy) plays a pivotal role in the maintenance of mitochondrial homeostasis, regulating the size and quality of the mitochondrial population. In addition, mitophagy eliminates damaged mitochondria under diverse stress conditions. Healthy mitochondria are also removed when attenuation of mitochondrial function is required upon hypoxia, caloric restriction, or during certain developmental processes. Mitochondrial surveillance and quality control mechanisms, including mitophagy, decline with age and in several pathologies, causing progressive deterioration of mitochondrial function. Deregression of mitophagy is closely linked to cancer development and progression. Thus, elucidation of the mechanisms governing mitophagy holds promise for novel anticancer interventions.1

Mitophagy is essential for mammalian erythrocyte matura-
tion from hematopoietic stem cell (HSC)-derived early progen-
itors. Mice with impaired autophagy in HSCs develop atypical
myeloproliferation and die within 12 weeks, recapitulating
many symptoms of human myelodysplastic syndrome (MDS)
and acute myeloid leukemia (AML). Autophagy-deficient
HSCs display a substantial increase in mitochondrial mass,
accompanied by elevation of mitochondrial ROS production
and DNA damage, in addition to higher proliferation and
apoptosis rates.2 Mice lacking Parkin, a component of the E3 ubiquitin ligase complex and a key mitophagy regulator, spontaneously develop liver tumors and are susceptible to radiation-induced lymphomagenesis.3 Notably, the human Parkin gene \textit{PARK2} maps to a site on chromosome 6 that is commonly deleted in several types of cancer.4 In \textit{C. elegans}, inhibition of mitophagy increases mitochondrial mass, uncoupled respiration from ATP production, enhances mitochondrial ROS production, and increases cytoplasmic calcium levels. These phenotypes are commonly observed in aged animals, and across large evolutionary distance.5 Increased ROS contribute to carcinogenesis by causing DNA damage and triggering aberrant alterations in gene expression. Therefore, in addition to the manifestation of pro-aging phenotypes, impairment of mitophagy potentially facilitates tumorigenesis.

Cancer cells within several types of solid tumors induce autophagy and mitophagy to adjust to their microenvironment of limited nutrient and oxygen availability. In the largely hypoxic solid tumor environment, energy production shifts from oxidative phosphorylation to glycolysis, leading to increased glucose uptake and reduced oxygen consumption, a phenomenon known as the Warburg effect. Hypoxia inducible factor 1\textalpha{} (HIF1\textalpha{}) mediates the adaptation of cancer cells to hypoxia. In solid tumors of breast and colon cancer, autophagy is induced upon hypoxia in a HIF1\textalpha{}-dependent manner. Furthermore, HIF1\textalpha{} upregulates mammalian mitophagy receptors BCL2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3) and BCL2/adenovirus E1B 19 kDa interacting protein 3-like (BNIP3L/NIX) in response to hypoxia.6 Mitophagy induction has thus been proposed to be part of a hypoxia adaptation response that promotes cancer cell survival.7 Similarly, genetic upregulation of DCT-1, the \textit{C. elegans} homolog of BNIP3 and BNIP3L/NIX, confers resistance against a variety of stressors at the organismal level.5

Notably, we found that DCT-1 upregulation under mitophagy-inducing conditions is mediated by SKN-1, the nematode homolog of mammalian nuclear factor erythroid-derived 2-like 2 (Nrf2/NFE2L2), a transcription factor that becomes activated upon oxidative stress to preserve mitochondrial homeostasis. In sharp contrast to HIF1\textalpha{}, which is known to downregulate mitochondrial biogenesis,8 SKN-1 stimulates the expression of core mitochondrial components, promoting
Mitophagy is emerging as a nexus of cellular and organismal physiology. Several mitophagy promoting conditions engage distinct transcription factors that impinge on cancer-associated processes. The extent of mitophagy induction is critical for the onset and progression of carcinogenesis. Impairment of mitophagy in healthy tissues can promote tumor formation and mobility of cancer cells, whereas mitophagy induction in hypoxic solid tumors promotes adaptation and tumor cell survival. Coordination of mitochondrial biogenesis and removal could provide a new pathway to circumvent the adverse effects of mitophagy in this context. Further dissection of this pathway could unravel new potential anticancer interventions targeting tumorigenesis by promoting mitochondrial rejuvenation.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Funding
This work was funded by grants from the European Research Council, the European Commission 7th Framework Program and the Greek General Secretariat for Research and Technology.

References