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The term cancer describes a group of multifaceted
diseases characterized by an intricate pathophysiology.
Despite significant advances in the fight against cancer, it
remains a key public health concern and burden on societies
worldwide. Elucidation of key molecular and cellular
mechanisms of oncogenic diseases will facilitate the
development of better intervention strategies to counter or
prevent tumor development. In vivo and in vitro models have
long been used to delineate distinct biological processes
involved in cancer such as apoptosis, proliferation,
angiogenesis, invasion, metastasis, genome instability, and
metabolism. In this review, we introduce Caenorhabditis
elegans as an emerging animal model for systematic
dissection of the molecular basis of tumorigenesis, focusing
on the well-established processes of apoptosis and
autophagy. Additionally, we propose that C. elegans can be
used to advance our understanding of cancer progression,
such as deregulation of energy metabolism, stem cell
reprogramming, and host–microflora interactions.

Introducing the Nematode Caenorhabditis elegans:
a Compelling Model for the Study of Cancer

Caenorhabditis elegans is a non-parasitic soil nematode that
feeds on various bacteria. It can also be easily raised in large num-
bers in the laboratory on agar plates or in liquid medium using
Escherichia coli bacteria. It is one of the simplest multicellular
organisms, existing mainly as hermaphrodite although males arise
occasionally at a frequency of 0.1%. It has a short generation

time of 3.5 d at 20�C and a short lifespan of about 2–3 weeks
under favorable conditions. A wild-type hermaphrodite produces
approximately 300 progeny by self-fertilization and over 1,000
progeny when fertilized by a male. “Female” and male mature
adults contain an invariant number of 959 and 1,031 somatic
cells, respectively, with an invariant cell lineage and precise ana-
tomical arrangements. Because of its transparent body at all stages
of its life cycle and its small size, C. elegans lends itself to non-
invasive optical methodologies that enable manipulation and
tracking of normal function and dysfunction at the cellular level
during development and aging. Interestingly, although nemato-
des and humans are separated by almost a billion years of evolu-
tion, C. elegans homologs have been identified for 60–80% of
human genes and many biological processes, including apoptosis,
cell signaling, cell cycle, cell polarity, metabolism, and aging, are
conserved between C. elegans and mammals.1 In addition, the
ease with which forward and reverse genetics can be applied have
led to refined genetic dissection of pathways that regulate devel-
opment and aging. Collectively, these features make C. elegans an
ideal model enabling a systematic approach to the elucidation of
genes and pathways involved in diverse pathologies, including
neurodegeneration and cancer.

Tumor formation and dissemination are associated with key
traits, such as sustained proliferation, immortalization, resisting
cell death, genome instability, induction of angiogenesis, inva-
siveness and metastasis, and deregulated energy metabolism. As
emerging findings highlight the importance of the tumor micro-
environment, exploring its contribution to tumor growth and
metastasis will be crucial for a better understanding of the molec-
ular and physiological requirements of tumorigenesis.2 Taking
advantage of the features mentioned above, researchers have suc-
cessfully used C. elegans to rapidly assess the functional impact of
specific gene mutations on tumor development and outcome at
the organismal level, and to screen for new anticancer drugs. In
this review, we survey new knowledge about cancer development
and progression with relevant findings in C. elegans, and discuss
the prospects of using the nematode to elucidate the cellular and
molecular underpinnings of tumorigenesis. As neoplastic diseases
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are highly diverse, we focus on worm models that have already
fostered a better understanding of the underlying mechanisms
relevant to human tumors such as apoptosis and autophagy, and
have pioneered the field. Findings from the worm for well-
defined processes involved in cancer development including cell
cycle progression, invasion, and metastasis will not be extensively
covered in this review since ample information is presented in
detail elsewhere.3-6 Moreover, we propose that C. elegans could
provide valuable insights into cancer development from a less-
appreciated perspective, such as cellular metabolism, stem cell
reprogramming and dedifferentiation, and host–microflora
interactions.

Alterations in Cell Death Pathways and their
Implications in Cancer

Different types of cell death have been described based on
morphological and biochemical criteria.7 Apoptosis, necrosis,
and autophagy are the most frequent modes of cell death. Accu-
mulating findings suggest that, although distinct from each other,
cell death mechanisms can effectively crosstalk depending on the
cellular context and the initiating stimulus.8 Cell death, which
plays pivotal roles in normal development and homeostasis at
both the cellular and organismal level, is subjected to tight con-
trol and when deregulated contributes to severe pathological con-
ditions.9 Although tumor formation is often linked to the ability

of cancer cells to sustain continuous proliferation, it can also
result from defects in apoptosis (Fig. 1). It is now clear that evad-
ing apoptosis is a core hallmark of cancer cells.2

Apoptotic cell death occurs as part of normal development
and morphogenesis, but it can also be triggered by a broad range
of stimuli, usually mild in nature. Physiological apoptosis in the
C. elegans germ line limits the number of oocytes competing for
nutrients in the gonad, thereby contributing to tissue homeosta-
sis. Physiological germ cell apoptosis relies on the core apoptotic
machinery composed of CED-9, (an antiapoptotic Bcl-2 homo-
log), CED-4 (a homolog of human APAF-1), and the caspase
CED-3, but is independent of CEP-1, a functional homolog of
the mammalian p53 tumor suppressor protein. On the other
hand, apoptosis induced by genotoxic stress requires both CEP-1
and the proapoptotic BH3-only protein EGL-1.10 Like physio-
logical germ line apoptosis, DNA damage-induced germ cell apo-
ptosis engages the CED-9 (Bcl-2), CED-4 (ApafI), and CED-3
(caspase-3) proteins.10-12 In addition to EGL-1, CED-13 is a
conserved BH3-only protein that binds to CED-9 and promotes
apoptosis in response to CEP-1 activation.13 Although the BH3-
only Bcl-2 family members are key mediators of apoptosis, their
mode of action remains elusive.14 Mammalian antiapoptotic Bcl-
2–like proteins physically interact with Bax and Bak through the
BH3 motifs. It has been shown that Bcl-2 can bind to and sup-
press the proapoptotic triggering proteins Bax and Bak, thus
inhibiting apoptosis and promoting tumor formation. Work
over the past decade has produced a considerable body of

Figure 1. Apoptosis prevents tumorigenesis. Schematic representation of DNA damage-induced apoptosis that limits tumor growth in mammals and
C. elegans. In mammals, activation of the proapoptotic proteins Bax and Bak under stress leads to release of cytochrome c. In turn, cytochrome c interacts
with Apaf1, which initiates the activation of a caspase cascade. Defects in apoptosis promote tumorigenesis. In C. elegans, binding of EGL-1 to CED-9/
CED-4 complex on the surface of mitochondria releases mitochondrial components allowing CED-4 to activate CED-3. CED-9, C. elegans homolog of anti-
apoptotic BCL-2; CED-4, C. elegans homolog of apoptotic protease activating factor 1 (APAF-1).
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research establishing that mutations affecting Bcl-2 family mem-
bers are implicated in cancer.15 Accordingly, overexpression of a
prosurvival family member or loss of a proapoptotic Bcl-2 pro-
tein can be oncogenic.16,17 Moreover, genes essential for apopto-
sis confer protection against DNA damage-inducing agents
(Fig. 1), including ionizing radiation, or specific anticancer drugs
such as cisplatin and camptothecin, both of which block cell pro-
liferation by inducing DNA double-strand breaks (DSBs). An
effective response to DSBs is one of the most important mecha-
nisms for maintaining genome integrity and preventing tumori-
genesis.18 Finally, apoptosis is activated as part of the nematode
innate immunity response against invading pathogens. This path-
ogenesis-induced germ cell apoptosis also depends on the activity
of EGL-1.10

Notably, the cellular and molecular mechanisms that mediate
apoptosis are remarkably conserved among metazoans.19 In this
regard, C. elegans has proven instrumental in providing critical
insights into the mechanisms that link apoptosis to tumor devel-
opment and anticancer drug resistance. More specifically, several
aspects of the C. elegans germ line make it a valuable genetic sys-
tem for analyzing the cellular and molecular underpinnings of
apoptosis and cancer: first, the worm germ line is pluripotent
and immortal; second, it is the only tissue in which the pattern of
apoptosis is not invariant; and third, it is the only tissue that
undergoes apoptosis in adults.10 Furthermore, although cell cycle
defects can occur in somatic cells of C. elegans, tumor-like pheno-
types have only been observed only in the germ line. When the
cell cycle and the apoptotic machinery are compromised, the
gonad is filled with mitotic nuclei as a consequence of the
expanding stem cell niche, allowing the study of tumor
development.

Accumulating findings from studies in C. elegans indicate that
longevity-influencing genes can modulate tumor susceptibility
through induction of germ cell apoptosis, among other mecha-
nisms. In support of this notion, SIR-2.1, the C. elegans homolog
of mammalian SIRT1, which has been implicated in modulation
of aging, has also been assigned a proapoptotic activity that is
confined to DNA damage-induced apoptosis. Specifically, SIR-
2.1 has been shown to translocate from the nucleus to the cyto-
plasm early during apoptosis. Its transient colocalization with
CED-4 provides evidence for a functional interaction between
these proteins. The proapoptotic function of SIR-2.1 does not
require the DAF-16/FOXO transcription factor whereas, in con-
trast, the longevity effect of sir-2.1 relies on the activity of DAF-
16. Further analysis suggests that sir-2.1 acts in parallel to cep-1
during DNA damage-induced apoptosis.20 Interestingly, CEP-1
contains several conserved residues that are frequently mutated in
human tumors, making it an attractive model to study p53-medi-
ated pathways with respect to tumor development.21 In addition,
regulators of CEP-1 activity include the well-characterized medi-
ators of tumor development Akt/AKT-1, HIF-1, MPK-1/ERK,
and LET-60/Ras.22

Further supporting the molecular link between aging and
tumor growth, longevity-promoting mutations, such as muta-
tions in the insulin/insulin-like growth factor-1 (IGF-1) receptor
abnormal DAuer Formation 2 (DAF-2), also confer protection

against germ line tumors caused by mutations in the gld-1 gene,
which encodes an RNA binding protein that contains a K homol-
ogy (KH) domain and primarily functions as a translational
repressor.3 The tumor protective effect of daf-2 inhibition during
adulthood depends on the activity of DAF-16/FOXO transcrip-
tion factor, which in turn upregulates diverse target genes that
directly or indirectly stimulate germ line apoptosis and inhibit
tumor cell proliferation, thus affecting tumor growth. Tumor
suppression by daf-2 inhibition also requires CEP-1. Collectively,
these findings suggest that the tumor suppressive effects of daf-2
mutations result from decreased cell division and increased DAF-
16/CEP-1–dependent apoptosis within the tumors (Fig. 2).
Importantly, mutations in the tumor suppressor gene phospha-
tase and tensin homolog deleted on chromosome 10 (PTEN)
induce tumorigenesis in humans through activation of insulin/
IGF-1 signaling and consequent inhibition of FOXO3A (the
mammalian homolog of DAF-16), leading to increased tumor
cell proliferation and decreased apoptosis. Therefore, the role of
the insulin/IGF-1 pathway in tumorigenesis appears to be con-
served through evolution.25 Further analysis demonstrated that
29 out of the 734 DAF-16 target genes tested influenced germ
cell proliferation or cep-1/p53–dependent apoptosis. Specifically,
inactivation of many nuclear pore-related genes blocked geno-
toxic stress-triggered apoptosis.26 The fact that many of the genes
identified as modulators of tumor growth are orthologs to known
human tumor suppressors or oncogenes validates use of C. elegans
as a cancer model. Additionally, recent evidence indicates that
daf-2 mutant animals show retardation of dysplastic age-related
uterine growths, which is coupled to the transcriptional abun-
dance of cep-1/p53. Uterine growths composed of abnormal
nuclei and large chromatin masses resemble the age-related pre-
malignant lesions frequently observed in mammals.28 Other lon-
gevity regulating pathways and regimens, such as inhibition of
respiration or caloric restriction, delay tumorigenesis by decreas-
ing tumor cell division without affecting apoptosis. Surprisingly,
none of these longevity mutations reduce germ cell proliferation
in wild-type animals. Taken together, these findings indicate that
lifespan-extending mutations may restrict tumorigenesis.26,27

C. elegans has been successfully used to uncover a novel link
between hypoxia and apoptosis in tumor progression. A recent
study has shown that the worm hypoxia inducible factor-1 (HIF-1)
antagonizes the function of CEP-1 in DNA-damage–induced
germ cell apoptosis. This inhibitory effect of HIF-1 is mediated to
a large part by transcriptional upregulation of the tyrosinase family
member TYR-2 in the ASJ neurons. Apoptosis is blocked once
TYR-2 enters the gonad. These intriguing findings highlight the
important role that 2 single neurons play in the regulation of
hypoxic systemic responses. Interestingly, knockdown of the
TYR-2 homolog TRP2 in human melanoma cells also increases
basal and cisplatin-induced p53 apoptosis, suggesting an evolution-
arily conserved link between HIF-1 and apoptosis. This in turn
points to TYRP2 as a novel putative target for new treatment strate-
gies against various solid tumors.29

HIF-1 has also been implicated in tumorigenesis induced by
loss of the gene encoding the tumor suppressor folliculin
(FLCN). Germline mutations in FLCN are associated with the
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Birt-Hogg-Dub�e (BHD) syndrome and an increased cancer risk.
FLCN normally binds to and blocks the action of AMP-activated
serine/threonine protein kinase (AMPK).30 AMPK is a conserved
sensor of cellular energy status that is activated when the cellular
AMP/ATP ratio increases under stress conditions such as nutri-
ent deprivation or hypoxia.41 Recent findings indicate that
FLCN inhibits tumorigenesis by inhibiting AMPK-dependent
HIF-activation. In contrast, loss of FLCN results in activation of
the AMPK/PGC-1a/OXPHOS/HIF signaling axis, which has
been extensively implicated in the initiation of sporadic tumors
in multiple organs.30 It is interesting to note that HIF-1 modu-
lates aging in C. elegans. Specifically, HIF-1 overexpression
extends lifespan and enhances resistance to heat and oxidative
stress, acting in parallel to DAF-16/FOXO and SKN-1/NRF
transcription factors. Surprisingly, loss-of-function mutations in
hif-1 also prolong lifespan under laboratory conditions, most
likely through different pathways.31

In addition to apoptosis, autophagy has also been implicated
in cancer. Macroautophagy (hereafter referred to as autophagy) is

an evolutionarily conserved process through which cytoplasmic
components including proteins, lipids, and organelles are
engulfed by double-membraned vesicles, the autophagosomes,
and delivered to lysosomes for degradation. The resulting break-
down products are exported into the cytoplasm, where they are
recycled.32,33 Compelling evidence derived from studies in inver-
tebrate and mammalian models clearly indicates that autophagy
plays essential roles under both normal and stress conditions. A
basal level of constitutive autophagy is crucial for routine clear-
ance of the cytosol under normal conditions, contributing to pro-
tein and organelle homeostasis and thus acting as a quality
control mechanism for post-mitotic differentiated cells. Autoph-
agy is also activated in response to various extrinsic and intrinsic
stress stimuli, such as low nutrient availability, hypoxia, heat, and
reactive oxygen species (ROS), as well as in response to the accu-
mulation of damaged organelles, particularly mitochondria, and
proteins, thus acting as a cell survival mechanism.34,35 Accord-
ingly, autophagy inhibition can trigger apoptosis or necrosis in
cells that could otherwise survive in a stressful environment.36

Figure 2. Linking cell death mechanisms to cancer. Deregulation of cell death mechanisms contributes to pathologic conditions, including cancer. Basal
autophagy supports metabolism through recycling of cytoplasmic material and serves a quality control function through protein and organelle turnover.
Impaired autophagy leads to accumulation of damaged organelles and protein aggregates, thereby promoting cellular damage and increased vulnera-
bility to disease. Stressful conditions, such as low nutrient availability, energy depletion, hypoxia, and oxidative stress, induce autophagy. Excessive
autophagy (for example due to activation of AMPK) can also be detrimental. Longevity-influencing genes have a role in tumor suppression; for example,
DAF-16/FOXO target genes can induce tumor cell apoptosis and prevent tumor growth. Arrows indicate stimulatory inputs. Bars indicate inhibitory inter-
actions. For clarity, some of the signaling connections are not shown. FOXO/DAF-16, a forkhead box O(FOXO) transcription factor; HIF-1, hypoxia induc-
ible factor-1; LKB1, serine/threonine protein kinase; TOR, target of rapamycin; TSC1/2, tuberosclerosis complexes 1 and 2; ROS, reactive oxygen species.
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Conversely, it is becoming increasingly clear that excessive
autophagy can be detrimental.33,37,38 The last decade has wit-
nessed a steady accumulation of findings indicating that autoph-
agy has a key role in the onset and progression of various
diseases, including cancer. Several recent studies have revealed
that autophagy can either suppress cancer initiation or promote
tumor growth in a context-specific manner. Specifically, autoph-
agy can prevent tissue damage, genome instability, and inflam-
mation by maintaining protein and organelle quality control,
thereby suppressing tumor initiation. On the other hand, it can
promote tumorigenesis by enabling tumor growth and survival
through nutrient recycling. Compelling evidence derived from
studies in mice has shown that mutant animals with allelic loss of
the essential autophagy gene beclin1 show increased occurrence
of spontaneous tumors, suggesting a critical role for beclin1 in
tumor suppression.39 However, the mechanisms through which
autophagy can modulate cancer are only just beginning to be
understood. The findings that autophagy-deficient mice accumu-
late insoluble ubiquitinated proteins, damaged organelles, and
lipid droplets and show increased levels of ROS suggest that
defective autophagy may cause cellular damage and increased
sensitivity to stress, thereby limiting survival (Fig. 2). In fact,
these mutant animals show increased vulnerability to disease,
including cancer.40 Figuring out how essential components of
the autophagy pathway can tip the balance toward either survival
or death is critical for the development of autophagy-based anti-
cancer therapeutics.

C. elegans has contributed significant insights into the role of
autophagy in cancer. For example, the pathway in which the
tumor suppressor FLCN functions was first delineated in nemat-
odes. It has been shown that loss of flcn-1, the C. elegans homolog
of FLCN, confers resistance to oxidative stress. This resistance
depends on the activity of AAK-2, the worm homolog of AMPK,
previously shown to induce autophagy both in mammals and in
C. elegans.42 Autophagy induction, in turn, protects against apo-
ptotic cell death and promotes survival under stress. This path-
way was shown to be conserved in mammalian cells, suggesting
that FCLN prevents tumor formation by negatively regulating
the activity of AMPK and consequently preventing AMPK-
dependent autophagy activation (Fig. 2).30

A Conserved Signal Transduction Pathway Controlling
Vulva Development is Implicated in Tumorigenesis

Receptor tyrosine kinase (RTK)/Ras GTPase/MAP kinase
(MAPK) signaling pathways control various biological processes
including cellular proliferation and transformation in metazoans.
Genetic screens for mutants with vulva defects allowed the identi-
fication of several RTK cascade mediators in C. elegans.43-45

LET-23/EGFR and EGL-15/FGFR RTKs stimulate LET-60/
Ras and a MAPK cascade consisting of the kinases LIN-45/Raf,
MEK-2/MEK, and MPK-1/ERK.46 The let-60 gene, which enc-
odes a C. elegans Ras homolog, plays an important role in induc-
ing vulva formation. Gain-of-function mutations in let-60 are
analogous to mutations that constitutively activate mammalian
ras leading to dysregulated cell division, thereby contributing to
oncogenesis. These mutations result in a multivulva phenotype

in the worm whereas partial loss-of-function mutations in let-60
lead to a vulvaless phenotype.47 Ras proteins are small GTP-
binding proteins that cycle between a GTP-bound state that is
active for signal transduction and an inactive GDP-bound state.
One of the 3 human ras alleles is mutated in»30% of all tumors,
and the incidence of ras mutation in pancreatic cancer is approxi-
mately 90%.48,49 Vulval development provides an excellent
model system for studying cell proliferation and differentiation,
processes that are tightly controlled in normal tissues. Deregula-
tion of cell growth and division and inhibition of cell differentia-
tion favor tumor development.

There are also clear examples of how C. elegans has proved to
be a powerful system for investigating the causative relationship
between gain-of-function mutations in c-Met receptor tyrosine
kinase and lung cancer in a whole organism context. Transgenic
worms expressing the most frequently observed mutant proteins
c-MetR988C and c-MetT1010I display locomotion defects, sig-
nificantly reduced fecundity, and abnormal vulva development
resulting in hyperplasia. These mutant phenotypes are intensified
following nicotine treatment. Taken together, these findings
imply that C. elegans is a rewarding model organism for studying
the impact of mutations in known human cancer genes and also
rapidly assessing gene–environment interactions in the pathogen-
esis of the disease, given that smoking is the major risk factor for
lung cancer.50,51 Overexpression, activation, or unique mutations
and sequence variants of c-Met receptor have been linked with
non-small cell lung cancer (NSCLC), a disease that is difficult to
cure. Inhibition of c-Met in NSCLC cell lines and tumor tissues
has been reported to reduce cell viability.52 In light of these
encouraging results, new nematode models expressing c-Met
alterations in the semaphorin domain and the juxtamembrane
domain, which are also implicated in NSCLC, could be gener-
ated with the aim of validating c-Met as a therapeutic target in a
whole animal setting.

Altered Cellular Energetics and Fat Metabolism in Cancer:
Lessons Learned from C. elegans

Cancer development is manifested by alterations in metabolic
regulation. The initial observation was made several decades ago
by Warburg, who demonstrated that cancer cells exhibit abnormal
energy production and utilization toward a favorable carcinogenic
outcome. Adaptation of energymetabolism during cancer develop-
ment is considered a key event and efforts to delineate the underly-
ing mechanisms have attracted much attention over past years.
Remarkably, but perhaps not surprisingly, various cancer types are
attributed to obesity; however, the complex mechanisms involved
remain widely elusive. In recent years, C. elegans has increasingly
been used to explore molecular mechanisms related to energy
homeostasis, since the most common metabolic pathways and the
network of genes that are involved in food sensation, endocrine sig-
naling, nutrient uptake, and transport and storage of fat are con-
served. The use of C. elegans can enable a better understanding of
both intrinsic and extrinsic mechanisms at an organismal level and
ultimately aid the design of better strategies against cancer.

During tumor progression the rapidly proliferating carcino-
genic cells require high amounts of energy in order to cope with
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increased metabolic needs. At the same time, high availability of
macromolecules is vital. Apart from the mechanisms described
by the Warburg effect, alternative pathways and processes are
proposed to endorse cancer. Mitochondrial metabolism is highly
implicated in cell division by providing energy and molecules for
de novo cell membrane synthesis. Consequently, mitochondria
are considered attractive targets against cancer and it is suggested
that induction of mitochondrial dysfunction could serve as a way
to fight cancer cells with metabolic dysregulation.53 However,
the underlying mechanisms remain enigmatic. Pathways that are
implicated in mitochondrial repair during mitochondrial dys-
function have been identified in C. elegans. Specifically, a
genome-wide RNAi screen revealed 45 genes that are required
for mitochondrial repair, detoxification, and pathogen response
during compromised mitochondrial function.54 These genes
were involved in ceramide and mevalonate metabolism. Deterio-
ration in ceramide generation or inhibition of the mevalonate
pathway resulted in compromised mitochondrial surveillance
and promoted mitochondrial dysfunction. Interestingly, the
mevalonate pathway has been proposed as a target for anticancer
therapy, whereas defects in ceramide biosynthesis and metabo-
lism contribute to tumor cell survival and resistance to chemo-
therapy.55,56 These findings further complicate the already
complex mechanisms by which defects in ceramide generation
that sustain mitochondrial dysfunction also contribute to tumor
survival. Therefore, it is imperative to better understand the exact
mechanisms governing mitochondrial function in order to more
efficiently treat tumors. Furthermore, in the tumor microenvi-
ronment where harsh conditions prevail, mitochondrial mass is
altered by mechanisms controlling mitochondrial biogenesis and
mitophagy, a selective type of autophagy responsible for mito-
chondria elimination.53 C. elegans has proved to be a powerful
model to further understand such mechanisms from diverse
aspects. For example, the mitochondrial prohibitin complex,
which has been associated with various cancer types, has been
shown to be involved in mitochondrial biogenesis and function,
exerting opposing effects in respect to energy metabolism, fat uti-
lization, and aging.57 Finally, during mitochondrial metabolism,
ROS are produced as a by-product of oxygen metabolism and
their levels determine cell fate in mechanisms best described by
mitohormesis.58 ROS are thought to be a double-edged sword
for cancer cells since they are required for cancer development,
but at the same time can be exploited in order to specifically
eliminate cancer cells.59 Studies performed on C. elegans have
shed light on how stressful conditions may be regulated or affect
whole organisms.60

The tumor microenvironment is characterized by extreme
conditions in which hypoxia and nutrient deprivation stress the
cells to a great extent. The autophagic machinery supports the
breakdown and recycling of macromolecules and cellular organ-
elles under such stressful conditions in order to maintain energy
homeostasis and provide new resources that are required for cell
division and growth. Lipophagy, another type of selective
autophagy for lipid breakdown, links lipid metabolism and
autophagy; however, how lipophagy is regulated remains unclear.
C. elegans has been proposed as an attractive animal model to

investigate lipophagy.61,62 Moreover, endocrine and paracrine
effects of adipose tissue are greatly implicated in cancer develop-
ment.63 Obesity causes adipocytes to malfunction, which in turn
may facilitate the development of obesity-related metabolic disor-
ders and cancer, mainly through paracrine and endocrine effects
mediated by adipokines. The systemic effects exerted by adipose
tissue are hard to elucidate. Thus, there is an imperative need to
investigate the mechanisms involved and studies in C. elegans
may contribute to a better understanding of such endocrine
effects at a systemic level. Indeed, the nematode has long been
used to elucidate such effects and the fact that several metabolic
pathways are conserved suggests that the worm is well suited to
investigate paracrine and endocrine effects exerted by the adipose
tissue. Overall, C. elegans could serve as a compelling animal
model to study the basics of cellular metabolism in a systemic
fashion, with important implications for various disorders such
as metabolic and oncogenic diseases.

Pluripotent Cells and Cancer Stem Cells: Gaining Insight
into Stem Cell Reprogramming and Dedifferentiation from an
Invertebrate Perspective

Over the past years an intriguing but controversial concept has
emerged—that solid tumors may contain cancer stem cells
(CSCs). Despite limited data, the prevailing hypothesis surmises
that CSCs, like their normal counterparts, are more resistant to
anticancer treatment and are responsible for tumor relapse once
treatment has been halted.64 Whether, and how, CSCs are
involved in the intricate mechanisms that confer resistance to
cancer therapy and enable tumors to regenerate, needs to be
defined in order to increase the chance of successful treatment.
Accumulating evidence suggests that epithelial-to-mesenchymal
transition (EMT) and the tumor microenvironment play a major
role.64 However, the molecular and cellular components of the
stem cell niches and the pathways involved in EMT transition
remain generally unknown. Because of the lack of appropriate
experimental systems, studies in C. elegans could rapidly provide
valuable information about the nature of CSCs and the mecha-
nisms by which they support tumors.

Although C. elegans consists mainly of post-mitotic cells, it is
widely accepted as a simple model system for elucidating key
aspects of stem cell biology.65 The C. elegans hermaphrodite
germ line is considered the main pool of pluripotent cells and
seam cells are acknowledged as an epidermal stem cell lineage.
Moreover, the germ line is the only tissue in C. elegans that can
lead to bona fide tumors caused by germline hyperproliferation
and, as already mentioned above, the only tissue capable of
undergoing apoptosis throughout adulthood. The flexibility and
advantages of such a powerful system for studying biological phe-
nomena pertinent to cancer and stem cells are increasingly
becoming acknowledged.

Conserved mechanisms for stem cell maintenance and differen-
tiation have been derived from studies inC. elegans. The proper bal-
ance of proliferation versus differentiation has been suggested to be
mediated by cell cycle regulation through a mechanism involving
repression of the Cyclin E/Cdk2 inhibitor CKI-2Cip/Kip and the
RNA binding proteins FBF/Pumilio and GLD-1/Quaking.66,67
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PUF-8, another RNA binding protein, regulates the balance
between cell proliferation and differentiation by preventing cells re-
entering the mitotic phase.68 In addition to the discussed RNA-
binding proteins, non-coding RNAs (ncRNAs) are also implicated
in pluripotency regulation and the processes of somatic cell reprog-
ramming.69 These studies highlight the importance of RNA regula-
tion in pluripotency maintenance. Furthermore, the germline stem
cell niche is a key determinant of stem cell fate. C. elegans offers a
powerful in vivo model to
study such mechanisms in a
physiological cellular micro-
environment, allowing inves-
tigation of niche–stem cells
interactions at a single-cell
resolution. Several extrinsic
mechanisms have been iden-
tified in C. elegans for the
maintenance of the progeni-
tor pool, revealing the impor-
tance of the micro- and
macro-environment (Fig. 3).
The best-examined mecha-
nisms are those mediated by
the 2 distal tip cells (DTCs),
which exert their effects from
the distal terminus of each
gonad. The DTC of each
gonad arm promotes the
mitotically proliferating pop-
ulation of cells through a con-
served GLP-1/Notch
signaling pathway. DTCs
express Delta/Serrate-like
ligands, which bind on the
GLP-1/Notch receptor of
distal germ cells resulting in
cleavage of the GLP-1/Notch
intracellular domain, which
then translocates into the
nucleus to inhibit meiosis
and promote mitosis.70

Whereas glp-1 knockout
causes germ cell differentia-
tion and its knockdown is
responsible for the balance
between cell proliferation
and differentiation, hyperac-
tivation of the GLP-1/Notch
signaling cascade causes germ
cells to persist in the mitotic
cycle, leading to tumors.71-73

These phenotypes are at least
partially independent of the
insulin/IGF-1 and TOR/
S6K pathways that are also
involved in germline

proliferation and maintaining the balance between meiosis and
mitosis.73,74 In addition, S6K/RSKS-1 was shown to link cell cycle,
cell fate, and nutrient response in progenitor cells in the hyperactive
GLP-1/Notch germ line model.74 In fact, in the absence of S6K/
RSKS-1 germ cells were resistant to adverse effects mediated by die-
tary restriction, suggesting the importance of the TOR/S6K path-
way in stem cell and germ cell metabolism, and eventually fertility.
Furthermore, lst-1 (lateral signaling target) and sygl-1 (synthetic

Figure 3. Mechanisms for stem cell maintenance, differentiation and reprogramming derived from studies in
C. elegans. (A) A wild-type gonad of a hermaphrodite worm. GLP-1/Notch signaling from the DTC cell is required for
normal germ cell renewal. Neuroendocrine effects mediated by ASI-expressed DAF-7/TGF-b are also implicated.
(B) Examples of how epigenetic factors may influence reprogramming. i) Reduction of a histone chaperone (LIN-53)
and concomitant ectopic expression of a specific neurogenic transcription factor leads to differentiation of germ
cells into specific neuronal ones (depending on the neurogenic factor expressed). ii) Germ cells are reprogrammed
into specific neurons in SRP-5 (a histone demethylase) and LET-418 (a chromatin remodeler) double mutants.
(C) Example of germ cell reprogramming mediated by RNA. GLD-1 and MEX-3 are RNA binding proteins that regu-
late germ cell differentiation.
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Glp) are targets of GLP-1/Notch signaling within the niche and
function redundantly to maintain germ line stem cells (GSCs).75

Neuroendocrine mechanisms have also been shown to influence
stem cell fate through the stem cell niche. DAF-7/TGF-b expressed
from ASI neurons has been implicated in mechanisms that influ-
ence the balance of proliferation versus differentiation in the C. ele-
gans germ line by acting on its receptor located on DTCs.76

Furthermore, adhesion molecules (such as cadherins and integrins)
also play a key role in germ cell renewal orchestrated by the niche.77

Finally, a better understanding of the sophisticated mecha-
nisms implicated in the process by which fully differentiated cells
can be reprogrammed into other cell types will have a huge impact
in regenerative medicine, stem cell biology, and cancer biology.
Such information could prove crucial for designing alternative
strategies to control tumor progression. Interestingly, natural cell
reprogramming events have also been observed, allowing a better
understanding of mechanisms involved in cell dedifferentiation.
In vivo observations of natural reprogramming inC. elegans during
development suggest that cell division is not a prerequisite for cell
reprogramming. In C. elegans, an epithelial cell transdifferentiates
into a neuron via a conserved pathway that requires the NODE
complex and SOX-2, suggesting that cell plasticity phenomena
might share mechanistic similarities across phyla.78,79 Further-
more, various manipulations have been used to stimulate reprog-
ramming of cells into a desired phenotype.80 Notably, a few years
ago it was demonstrated that depletion of GLD-1 and MEX-3, or
GLD-1 alone, causes germ cells to ectopically transdifferentiate
into various somatic cell types, forming human germ cell tumor-
like teratomas.67,81 However, epigenetic factors may confer resis-
tance to efficient reprogramming to specific cell types.82 It was
recently demonstrated that ectopic expression of a specific neuro-
genic transcription factor in worms with suppression of LIN-53 (a
histone chaperone) leads to the conversion of mitotic germ cells
into specific neuronal ones, whereas the histone H3K4 demethy-
lase SPR-5/LSD1 and the chromatin remodeler LET-418/Mi2
cooperatively function to impede somatic dedifferentiation of
germ cells.83,84 The information that has been acquired from C.
elegans indicates that it could be a powerful in vivo model for the
investigation of key aspects of pluripotency with respect to cancer
development, relapse, and treatment.

Interactions between Microbiota and C. elegans: an
Emerging Model system for Investigating the Effects of
Symbiosis and Dysbiosis in Cancer Development

Gastrointestinal microflora is believed to be linked to the gen-
esis and development of cancer. Emerging evidence suggests that
gut microbiota, which account for the largest percentage of the
human microbiome, are directly associated with colorectal can-
cer, although the mode of action remains largely enigmatic.85,86

Paradoxically, both tumor promoting and antitumor effects have
been attributed to microbiota.86–90 The tumor promoting effects
are believed to be exerted by specific bacterial pathogens (i.e.,
Helicobacter pylori) or by the metabolic action of micro-
biota.87,89,90 Xenobiotics, as well as prescribed drugs and antican-
cer agents or their metabolites that are further metabolized by gut
microbiota, may lead to cell toxicity and the induction of

intestinal tumors.90-92 On the other hand, a “healthy” micro-
biome may act protectively by facilitating maturation of the
immune system.93

The direct interplay between bacteria and eukaryotes could be
investigated in a simpler in vivo model that lacks an adaptive
immune system. C. elegans grown on a bacteria lawn in common
laboratory settings is considered a fundamental model organism
to study host–microbe–interactions at the organismal, cellular,
and molecular level.42 Just recently, it was demonstrated that bac-
teria-derived nitric oxide (NO) increases C. elegans stress resis-
tance and enhances longevity through a mechanism regulated by
HSF-1 and DAF-16/FoxO transcription factors.94 This study
shed light on an mechanism that is shared among species and
underlies the effect of a signaling molecule with multifaceted and
controversial outcomes. The role of NO in cancer development
remains ambiguous. It has been suggested to promote different
cancer-related events such as angiogenesis, apoptosis, and metas-
tasis; however, its role as a potential antioncogenic agent is cur-
rently being evaluated. The increased expression of iNOS and
eNOS in human colorectal cancers might suggest a hormetic
mode of action of NO and additive effects of microbiota-derived
NO should be also taken into account.95 Further understanding
of the role of NO in tumor biology will reduce the controversy
and confusion and aid the development of novel NO-based ther-
apies to prevent and treat various human cancers. In another
example, the microbiome-dependent effect of metformin on
C. elegans revealed the importance of microbiota metabolism on
drug efficacy.96 Metformin is a widely prescribed antihyperglyce-
mic drug used for the treatment of type-2 diabetes. Anticancer
properties of metformin have also been identified; however, the
mechanisms mediating these beneficial effects are still unknown.
A possible explanation is that drug efficacy is indirectly induced
through gut microbiota metabolism; thus the microbiota might
determine the diverse responses of drugs observed in individuals.
Studies on C. elegans may significantly contribute toward a better
understanding of complex interspecies interactions that impact
diverse diseases such as cancer, thus enabling specific individual-
ized anticancer treatments based on microflora composition.

Concluding Remarks and Outlook
Studies in C. elegans have provided valuable information that

extends beyond the customary insights and have contributed to
current understanding of the complex molecular and cellular
mechanisms governing cancer initiation and development. In
this review, we survey well-conserved processes that have been
characterized as hallmarks of cancer.2 In addition to the knowl-
edge gained from such an approach, the nematode C. elegans
could also be used as an in vivo model for high-throughput anti-
cancer drug screening in a whole animal context without the lim-
itations of ethical boundaries. Drug efficacy and adverse effects
could be rapidly and readily assessed in a simple but well-
characterized animal, as recently demonstrated for anticancer
agents.97,98 In this regard, the nematode could be even used in
drug screening against tumor-induced angiogenesis. Despite the
lack of a circulatory system, proteins vital for angiogenesis, such
as the PDGF/VEGF-like factor PVF-1, are expressed in C.
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elegans and, more importantly, can induce angiogenesis in verte-
brate assay systems.99 In summary, C. elegans offers a powerful
platform for the deconvolution of carcinogenesis and thereby the
identification of new drug targets, thus contributing to the devel-
opment of new therapeutic interventions.
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