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Multiphoton fluorescence microscopy is a powerful

imaging technique that depends on complex quantum

mechanical interactions between photons and matter

for fluorophore excitation. In conventional fluorescence

microscopy, a fluorescent molecule is pumped to an

excited state by absorbing a single photon. The molecule

subsequently falls back to its ground state by emitting a

less energetic photon. This is a linear process of absorbing

and emitting energy in the form of single photons. By

contrast, multiphoton microscopy is based on nonlinear

interactions between light and matter, whereby multiple

photons are absorbed to bring single fluorophore mol-

ecules to an excited state. Two-photon fluorescence

microscopy is the most commonly used multiphoton

imaging technique. In two-photon microscopy, the

fluorescent molecule absorbs two photons simul-

taneously in a single event, and their combined energies

provoke the electronic transition of the molecule to

the excited state. Advantages of two-photon fluor-

escence, compared to typical single-photon epifluo-

rescence microscopy, include reduced autofluorescence,

deeper tissue penetration, inherent confocality and

three-dimensional (3D) imaging, as well as, minimised

photobleaching and photodamage. Thus, two-photon

microscopy facilitates optical sectioning of thick bio-

logical specimens in vivo,whichwouldnotbepossiblewith

conventional imaging techniques. Recent advances in

fluorescence microscopy have expanded the application

spectrum and usability of multiphoton imaging, which

has become an important and versatile tool in modern

biomedical research.

Introduction

The inventionof two-photonfluorescence lightmicroscopy
by Denk et al. (1990) revolutionised three-dimensional
(3D) in vivo imaging of cells and tissues.As shown in Table1,
progress in the development of two-photon microscopy,
combined with other technological breakthroughs in past
decades has rendered two-photon imaging methodologies
accessible to the scientific community (Phan and Bullen,
2010). The theoretical basis of two-photon excitation was
established by Goeppert-Mayer (1931), and this photo-
physical effect was verified experimentally by Kaiser and
Garret in 1963. Typical fluorescence requires a single
photon of the appropriate energy to interact with a fluor-
ophore (a molecule that fluoresces). The photon is
absorbed and its energy causes the transition of the fluor-
ophore to an excited electronic state. This higher electronic
state is unstable and the molecule, within a short period
of time (1028–1029 sec), returns to its ground state by
emitting a new photon, which has less energy than the
exciting photon. This excitation–emission process typi-
cally requires photons in the ultraviolet or blue/green
spectral range. In two-photon excitation a fluorophore
is excited by the simultaneous absorption of two photons
(multiphoton absorption) (Figure 1). Each of these two
photons has about half of the energy that is normally
required to excite the molecule from its ground state. This
process typically requires photons in the infra-red spectral
range. Since two-photon excitation depends on the simul-
taneous absorption of two infra-red photons, the prob-
ability of two-photon absorption by a fluorescentmolecule
is a quadratic function of the excitation radiance. Under
sufficiently intense excitation, three- and higher-photon
excitation is also possible and deep UV microscopy based
on these processes has been developed. See also: The
Development of Fluorescence Microscopy
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Table 1 Milestones relevant to the development of two-photon microscopy

Year Advance

1929 Maria Goppert predicts two-photon excitation

1962 Osamu Shimomura discovers aquoerin

1978 Thomas Cremer and Christoph Cremer develop the laser scanning confocal microscope

1983 Agard and Sedat develop deconvolution algorithms for image restoration and elimination of out-of-focus fluorescence

1990 Denk and co-workers develop the two-photon microscope

1991 Single-box Ti:Sapphire laser is introduced for two-photon excitation

1994 Martin Chalfie uses the Green Fluorescent Protein (GFP) as a genetic marker

1993 Bacskai and Tsien use FRET to resolve spatially dynamics of camp and protein kinase A subunits in Aplysia sensory

neurons

1995 Tsien and colleagues engineer enhanced GFP (eGFP)

1996 Bio-Rad introduces the first commercial two-photon microscope

1996 Tsien and colleagues develop GFP variants: eCFP and eYFP

1999 Lukyanov and colleagues clone dsRed

2001 Denk and co-workers develop a miniature head-mounted two-photon microscope

2002 Miyawaki and colleagues clone Kaede, a green fluorescent protein that can be photoconverted to emit in the red upon

exposure to UV light

2002 Tsien and colleagues generate the monomeric mRFP1 variant of dsRed

2004 Tsien and colleagues develop improved monomeric (mCherry) and tandem (tdTomato) variants of dsRed

2008 Gu and co-workers describe the first hand-held two-photon microendoscope

2009 Tsien and colleagues develop infra-red fluorescent dyes derived from bacterial phytochromes

Adapted from Phan and Bullen, 2010; Agard and Sedat, 1983; Bacskai et al., 1993; Goppert, 1929.
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Figure 1 Jablonski diagram of one-photon (a) and two-photon (b) excitation, which occurs as fluorophores are excited from the ground state to the first

electronic states. One-photon excitation occurs through the absorption of a single photon. Two-photon excitation occurs through the absorption of two

lower-energy photons via short-lived intermediate states. After either excitation process, the fluorophore relaxes to the lowest energy level of the first excited

electronic states via vibrational processes. The subsequent fluorescence emission process for both relaxation modes is the same.
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Design of a Multiphoton Microscope

Although the possibility of nonlinear excitation was
first documented in 1978 (Sheppard and Kompfner, 1978),
two-photon microscopy was not practically demonstrated
until 1990 (Denk et al., 1990). These early studies indicated
that two-photon excitation processes could be exploited
for 3D imaging. Indeed, inherent optical sectioning
(confocality) is one of the most important properties of
two-photon microscopes equipped with high numerical
aperture objective lenses. In single-photon excitation of
spatially uniform samples, fluorescence signals are gener-
ated equally from each z-section above and below the focal
plane. By contrast, in two-photon excitation, over 80% of
the total fluorescence signal is confined to the focal point

region, approximately 1mm thick. This sharp depth dis-
crimination is the result of the inverse quadratic depend-
ence of excitation probability on the spatial distribution of
the excitation radiance. Appreciable two-photon fluor-
escence occurs only at the objective lens focal volume,
where photon density is high; negligible fluorescence is
excited outside of this volume (Figure 2a, b). The typical
two-photon excitation point spread function when 960 nm
excitation light is focused by a 1.25 NA objective has a full
width at half-maximum of 0.3 mm in the radial direction
and 0.9 mm in the axial direction (Figure 2c).
Two-photon excitation efficiency ismaximisedwhen laser

light is focused to a diffraction-limited volume. Figure 3

shows a typical two-photon microscope design. A critical
component in a two-photonmicroscope is its light source; a

Figure 2 A schematic representation of the localisation of two-photon excitation. (a) Infrared light (blue arrow) is focused by an objective lens and

fluorescence (red arrow) occurs only at the focal volume. (b) A detailed excitation profile of the two-photon excitation volume. The full width at

half-maximum of the excitation profile is 0.3 mm along the radial direction (left) and is 0.9 mm along the longitudinal direction (right) at a laser wavelength of

960 nm. (c) A demonstration of the localisation of two-photon excitation volume. Fluorescein solution is excited by one-photon excitation (blue arrow)

via a 0.1 numerical aperture objective; fluorescence excitation is observed throughout the path of the laser beam. For two-photon excitation using a second

objective with the same numerical aperture (red arrow), fluorescence excitation occurs only from a 3D localised spot.
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high-radiance light source on the order of 1010–1012

Wcm22 is required for efficient excitation. Two-photon
microscopy utilising continuous-wave lasers has been
demonstrated. Adequate radiance level can in principle be
achieved by focusing light from a 1W continuous-wave
laser to a 1029 cm2 diffraction-limited focal volume.
However, the high average laser power is a concern for
pigmented biological sampleswith appreciable one-photon
absorption. To offset considerable specimen photo-
damage, high repetition rate (100MHz), ultra-fast (fem-
tosecond or picosecond pulse widths) lasers, such as
titanium-sapphire andNd:YLF lasers, are the most widely
used light sources in modern implementations of multi-
photon microscopy. The higher peak power and the lower
duty cycle of these lasers minimise average power depos-
ition in biological samples, while maximising two-photon
excitation efficiency.

Figure 3 shows a laser excitation beam directed into
the microscope via an epiluminescence light path. The
excitation light is reflected by a dichroic mirror to the
microscope objective and is focused in the specimen. Two-
photon induced fluorescence is generated at the diffraction-
limited volume. Images are constructed by raster scanning
the fluorescent volume in three dimensions using a
galvanometer-driven x–y scanner and a piezo-objective
z-driver. Emission signals are collected by the same
objective and transmitted through a dichroic mirror along

the emission path (epifluorescence). An additional barrier
filter is also required to further attenuate scattered exci-
tation light. High-sensitivity detection electronics, such as
single-photon counting circuitry, are used to ensure max-
imal detection efficiency and signal dynamic range.

Fluorophores for Multiphoton
Microscopy

One-photon and two-photon excitation are fundamentally
different quantum-mechanical processes and obey very
different selection rules. Thus two-photon absorption
spectra are not direct derivatives of the respective one-
photon spectra. As a result, the two-photon excitation
spectrum of a fluorophore, scaled to half the wavelength is
typically not equivalent to its one-photon excitation spec-
trum. Ideally, wavelength scans are performed to derive
two-photon absorption spectra for each fluorescent dye or
protein and determine the optimal excitation wavelength
for maximum brightness (Dickinson et al., 2003). A wide
range of fluorescent proteins have been systemically char-
acterised for their two-photon absorption properties
(Xu et al., 1996; Drobizhev et al., 2009; Tillo et al., 2010;
Drobizhev et al., 2011). The emission spectrum of a fluor-
ophore, in the absence of ground-state heterogeneity,
is independent of the excitation mechanism, since the
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Figure 3 A schematic drawing of typical components in a two-photon microscope. This system typically consists of a high-peak-power pulsed laser, a high-

throughput scanning microscope and high-sensitivity detection circuitry.
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molecule relaxes to the same excited state through vibra-
tional mechanisms before emission. Therefore, fluor-
ophore emission spectra remain essentially unchanged
between one- and two-photon excitation modalities.

Technological developments inmultiphotonmicroscopy
have generated considerable interest in the development
and characterisation of new fluorophores with properties
that would allow harnessing the powers of new imaging
modalities. Recently, infra-red fluorescent proteins derived
from bacterial phytochromes were described (Shu et al.,
2009). The use of such fluorescent proteins increases the
capacity for deeper tissue penetration because these pro-
teins both absorb and emit wavelengths that are less
affected by light scattering and tissue opacity. Moreover,
photoactivatable fluorescent proteins markers such as
Kaede (Ando et al., 2002), eosFP (Wiedenmann et al.,
2004), Dendra (Gurskaya et al., 2006) and kikume Green–
Red (kikGR; Habuchi et al., 2008) have been developed
that shift from green to red fluorescence upon exposure to
UV light. This type of opticalmarker canbe used for single-
cell marking and tracking for long periods of time (Hatta
et al., 2006; Kohli et al., 2011). See also: Green Fluorescent
Protein (GFP)

In addition to fluorescent proteins, the use of small
organic fluorescent molecules, coupled with multiphoton
imaging, is becoming indispensable in modern biomedical
research. Such fluorescent probes can provide information
about the localisation and quantity of biomolecules of
interest. The advantage of these probes over the fluorescent
proteins is that they can be used directly with biological
specimens without the need of prior genetic engineering.
New fluorescent probes with improved properties are
becoming available, designed for a variety of target bio-
molecules. For example, there is a variety of fluorescent
probes that can be used for the detection of lipid rafts (Kim
et al., 2007a, b, c), various metal ions such as Ca2+

(Grynkiewicz et al., 1985; Takahashi et al., 1999;Kim et al.,
2007a, b, c), Mg2+ (Kim et al., 2007a, b, c), Zn2+ (Zeng
et al., 2006) and other analytes including reactive oxygen
species (ROS; Soh, 2006), reactive nitrogen species (RNS;
Gomes et al., 2006), anions (O’Neil and Smith, 2006) and
saccharides (Cao and Heagy, 2004). Despite the fact that
numerous probes have been developed so far, none of them
is ideal for all applications. The next generation fluorescent
probes are anticipated to exhibit increased photostability,
brightness and a wide range of defined intracellular local-
isation patterns. See also: Fluorescent Analogues in
Biological Research; Fluorescent ProbesUsed forMeasur-
ing Intracellular Calcium

Comparison of Conventional,
Confocal and Multiphoton
Microscopy

Conventional light microscopy is an important tool in the
field of biology. Brightfield and darkfield microscopy are

some of the simplest microscopy techniques. In brightfield
microscopy the sample is illuminated by white light and
contrast is obtained by the differential absorbance of the
transmitted light. The simplicity of brightfield microscopy
makes it a very popular imaging method. In darkfield
microscopy, while the whole sample is illuminated by light,
transmitted light is rejected and only scattered light is col-
lected by the objective lenses. This microscopy technique
can be used to enhance the contrast in unstained and live
biological samples. Conventional microscopy approaches
are limited by the scattering and shallow penetration of
light, allowing observation of only relatively thin samples.
Thus, ability to resolve microscopic structures in optically
thick samples is limited because the image at the focal plane
is blurred by out-of-focus noise. The invention of confocal
microscopy in the 1960s and two-photonmicroscopy in the
1990s has started to address 3D imaging needs. Confocal
microscopy solves the problem of blurring by rejecting
signals that come from above and below the focal plane.
This is achieved optically, by using a focused scanning laser
beam to illuminate the sample and by placing a pinhole
aperture in front of the electronic photondetector.See also:
Confocal Microscopy; Fluorescence Microscopy; Light
Microscopy – Brightfield and Darkfield Illumination;
Single-Molecule Light Microscopy
Two-photon microscopy has a number of additional

advantages. Firstly, in two-photon microscopy light of
longer wavelength is used. Near infra-red wavelengths are
poorly absorbed and less scattered in biological samples.
This allows penetration of the excitation light deeper into
the specimen. Therefore, two-photon microscopy permits
examination of thick biological samples. Also, the use of
infra-red wavelengths reduces photodamage and photo-
bleaching, since photons carry less energy and fluor-
ophores are excited only at the focal plane. This is
particularly important when a specific region needs to be
imaged repeatedly over a longperiodof time.Furthermore,
because in two-photon microscopy excitation only occurs
at the focal plane, confocality is inherent, alleviating the
requirement for pinholes and the consequent reduction
of sensitivity due to photon loss. Finally, two-photon
microscopy can be used to trigger controlled and localised
photochemical reactions in a specimen without unwanted,
spurious effects outside of the focal plane (Denk et al.,
1994). See also: Cell Staining: Fluorescent Labelling of
the Golgi Apparatus; Fluorescence Resonance Energy
Transfer

Limitations of Multiphoton
Microscopy

Despite the potential advantages of two-photon micro-
scopy, some limitations and drawbacks remain to be
solved. Compared with confocal microscopy operating at
UV or blue-green excitation wavelengths, two-photon
microscopy minimises photobleaching and photodamage.
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Unlike in confocal microscopy, where the sample is illu-
minated in its entire volume, photobleaching and photo-
damage are limited to a sub-femtolitre volume at the focal
point. This reduction in photodamage volume results in a
dramatic increase in the viability of the biological sample.
However, two-photon excitation causes considerable
photobleaching at the focal plane. Although, in single-
photonmicroscopy photobleaching dependsmainly on the
excitation wavelength, in two-photon microscopy photo-
bleaching depends on the photon density at the focal point
(Patterson and Piston, 2000; Kalies et al., 2011). Also, in
pigmented samples thermal damage is observed at the focal
plane because of local heating from absorption of infra-red
light at high laser power. In addition, photodamage can be
caused by two-photon or higher-photon excitation of
endogenous and exogenous fluorophores similar to that
of ultraviolet irradiation. Fluorophores may also act as
photosensitisers in photooxidative processes. Photo-
activation of these fluorophores results in the formation of
reactive oxygen species that trigger successive biochemical
damage cascades in cells (Konig et al., 1996). Finally, in
specific settings, it is possible that near infra-red excitation
light may interact linearly with chromophores in the sam-
ple. For example, this could happen in plant tissues, where
the photosynthetic complex absorbs near infra-red radi-
ation (Ustione and Piston, 2011).

Applications and Possibilities for
Two-photon Microscopy

Two-photon microscopy is expected to have an impact in
areas such as physiology, neurobiology, embryology and
tissue engineering, for which imaging of highly scattering
tissue is required. Two-photon microscopy has been used
successfully to study the development of model organisms
such as Danio renio (Yaniv et al., 2006; Carvalho and
Heisenberg, 2009; Russek-Blum et al., 2010; Kohli et al.,
2011),Caenorhabditis elegans (Mohler et al., 1998; Ji et al.,
2008; Filippidis et al., 2009) and Drosophila melanogaster
(Rebollo and Gonzalez, 2010). These are areas where tra-
ditional confocal microscopy fails because photodamage
substantially reduces the viability of the specimens. The
main advantage of two-photon microscopy is its ability to
maintain the resolution and contrast deepwithin scattering
tissues. This allows direct visualisation of cells and their
network dynamics, in situ, while they are maintained
embedded in their natural environment. In addition,
monitoring of cellular function and responses after sys-
temic manipulations is greatly facilitated (Brustein et al.,
2003; Stosiek et al., 2003;Kerr et al., 2005;Niell and Smith,
2005; Ohki et al., 2005; Sullivan et al., 2005). Moreover,
in vivo two-photon imaging allows studies of structural and
functional changes in anorganismover longperiodof time.
The development of a miniaturised fibre-optic two-photon
microscope has opened new possibilities for in vivo imaging
of freely moving and behaving animals (Helmchen et al.,

2001; Flusberg et al., 2005; Engelbrecht et al., 2008).
Clinically, two-photonmicroscopymayfindanapplication
in noninvasive optical biopsy, for which high-speed
imaging deep into tissues is required. This prerequisite has
already been addressed by video rate two-photon micro-
scopy (Bewersdorf et al., 1998; Lee et al., 2011). See also:
Caenorhabditis elegans as an Experimental Organism;
Zebrafish as an Experimental Organism
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