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Abbreviations

AD Alzheimer’s disease

CMT2A Charcot-Marie-Tooth 2A

DOA Dominant optic atrophy

DRG Dorsal root ganglia

FCLS French Canadian Leigh syndrome

LHON Leber’s hereditary optic neuropathy

LRP130 Leucine rich protein 130 kDa

MFN1 Mitofusin1

MFN2 Mitofusin2

mtDNA Mitochondrial DNA

OPA1 Optic atrophy 1

PD Parkinson’s disease

PGC-1a Peroxisome proliferator-activated receptor

coactivator 1-a
RGCs Retinal ganglion cells

Mitochondrial dysfunction is becoming appreciated as a

unifying characteristic of diverse degenerative pathologies

affecting distinct populations of central and peripheral

neurons. Indeed, mitochondria require an intact transport

and signalling network within the cell to optimally perform

their function. Consequently, the mitochondrial system is

highly sensitive and would likely be particularly affected in

malfunctioning neurons that are losing synapses to other

cells and become progressively isolated from their network

before dying. In line with this notion, mitochondrial

abnormalities have been linked with neuronal ageing [1] as

well as with Alzheimer’s disease (AD) or related tauopathies

(see for example refs [2–4]) and Parkinson’s disease

(PD) [5].Thus, aberrant mitochondrial function is a normally

anticipated consequence of neuronal degeneration.

However, is the reverse also true? Here, we discuss

emerging evidence that indicates a causative involvement

of mitochondria in specific cases of neurodegeneration,

focusing on specific aspects of mitochondrial biogenesis

and dynamics. The realization that the primary cause of

some familial forms of neurodegenerative disorders lies in

mutations in nuclear genes encoding mitochondrial pro-

teins, or in mitochondrial genes, provides compelling

support for the hypothesis that mitochondrial abnormalities

can be causative of neuronal degeneration.

Evidence in support of this view has its roots in 1988

when Leber’s hereditary optic neuropathy, a neurodegen-

erative disorder affecting specifically retinal ganglion cells

(RGCs), was for the first time associated with pathogenic

defects of mitochondrial DNA (mtDNA) [6]. This key

finding commenced the so called ‘‘molecular era of mito-

chondrial medicine’’. Following this discovery, it was

progressively appreciated that RGCs are particularly vul-

nerable to mitochondrial defects, which compromise their

survival and maintenance. For example, dominant optic

atrophy (DOA), the most commonly inherited optic neu-

ropathy characterized by the specific loss of retinal gan-

glion cells [7], was also attributed to various mutations in

the nuclear gene OPA1 [8, 9], encoding a mitochondrial

dynamin-related GTPase. OPA1 functions in the formation

and maintenance of the mitochondrial network by regu-

lating mitochondrial fusion. Recent work suggests that it

also functions by directly controlling the replication of

mtDNA and the distribution of nucleoids [10].

In addition to RGCs, disrupted mitochondrial fusion is

also responsible for the degeneration of sensory neurons

in patients with axonal Charcot-Marie-Tooth disease
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(designated CMT2A). In this case, however, OPA1 is not

implicated; mitochondrial dysfunction is rather due to point

mutations in mitofusin-2 (MFN2). Similarly to OPA1,

MFN2 is a large nuclear-encoded dynamin-like GTPase

protein, anchored in the outer mitochondrial membrane by

two transmembrane domains. Overexpression of several

Mfn2 mutants in cultured sensory neurons, isolated from the

dorsal root ganglia (DRG) of the rat, induces mitochondrial

aggregation around the nucleus [11]. As a consequence,

neurites are almost completely devoid of mitochondria, with

few static mitochondria still present. In addition, transgenic

mice over-expressing the Mfn2T105 M variant in motor-

neurons, display severe motorneuron degeneration accom-

panied by muscular atrophy. In this case, mitochondria

appear to also collapse around the nucleus and only few

reach distal parts of axons [12]. Therefore, mutations

affecting the fusion machinery (Fig. 1) are particularly

effective in triggering degeneration of neuronal populations

that are diverse in their developmental origin and function.

Correct distribution of mtDNA appears to rely upon

mitochondrial fusion. For example, in MEFs lacking MFN2,

MFN1 or both, a significant amount of mitochondria is

devoid of mtDNA [13]. Notably, the same phenotype is

found in OPA1 depleted cells. These findings indicate that

mitochondrial fusion could be a mechanism facilitating

mtDNA maintenance through exchange of DNA molecules

between mitochondria. However, the mechanism by which

germline mutations in ubiquitously expressed proteins such

as OPA1 and MFN2 lead to the strictly selective degenera-

tion of RGCs and peripheral neurons respectively, while

leaving other populations intact remains largely unclear and

difficult to interpret [14–16]. One possible explanation could

lie in the vast morphological heterogeneity and distinct

electrophysiological properties of different neurons,

innately established to serve local needs for proper synaptic

patterning and communication. As a result, there is a cor-

responding heterogeneity in the requirements for trafficking

mitochondria and attending to different energy demands in

different types of neurons. RGCs for example, have

remarkably complex dendritic trees [17], and sensory neu-

rons similarly have multi-dendritic arbors, making both

populations very similar in this aspect of morphology, yet,

idiosyncratic compared to other neurons.

Another possible explanation is that mitochondrial

dynamics are modulated differentially by cell-specific

mechanisms that remain poorly delineated. For example, it

has been found that the OPA1 gene produces many splice

variants. Some of these splicing isoforms (4/4b and 4b/5b)

predominate in foetal brain, retina, heart and muscle, while

splicing isoforms 4/5b and 4/4b/5b are weakly but ubiqui-

tously expressed in all tissues [18]. The biochemical proper-

ties of these splice variants, and their proportion in different

neuronal populations, remain unknown. In general, high

transcript levels are observed in the retina [8], a fact which

may be related to the apparent restriction of the clinical

phenotype to the visual system. Moreover, there is an

increasing number of new proteins with mitochondrial

localization being identified (for example see Ref. [19]), and

already known proteins are found to also localize to mito-

chondria, in addition to other cellular compartments. There-

fore, as of yet unidentified modulators of the fusion

machinery with distinct distribution profiles in the nervous

system may be involved in the pathogenesis of DOA and

CMT2A.

Notably, a new gene cluster, which is termed Armcx [20]

and is localized on the X chromosome of eutherian mam-

mals, encodes a new family of proteins that regulate

mitochondrial dynamics, with some members exclusively

Fig. 1 Schematic

representation of mitochondrial

dynamics aberrations (in either

fusion or transport), leading to

degeneration of specific

neuronal subpopulations.

Mitochondria of normal shape

and structure are represented in

red, while fragmented

mitochondria are shown in blue.

Note that fusion and transport

defects, resulting from

mutations in different genes,

both result in accumulation of

mitochondria in the perinuclear

space and prevent their

distribution to neuronal

processes (Color figure online)
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expressed in the nervous system. Furthermore, one family

member, Alex3, influences the dynamics and trafficking of

mitochondria in neurons through interaction with the

Kinesin/Miro/Trak2 complex, in a Ca2?-dependent man-

ner. Similarly to mutations in OPA1 and MFN2, Alex3

overexpression also alters mitochondrial distribution and

morphology, resulting in aggregation of mitochondria at

the perinuclear space, and impaired trafficking into pro-

cesses (Fig. 1), suggesting a functional link between the

processes of fusion and trafficking.

The tissue distribution and function of the remaining 5

genes present in this cluster has yet to be investigated, but

offers a potentially promising avenue for gaining more

insight into the complex regulation of mitochondrial

function in neuronal populations. Consistent with the

notion that the mitochondrial fusion/fission is coupled with

trafficking mechanisms in neurons to ensure proper distri-

bution and function of mitochondria (Fig. 1), recent studies

demonstrate a direct functional link between actin-medi-

ated mitochondrial transport and tau toxicity in neurons

in vivo [21]. Specifically, tau overexpression, a common

model of AD, results in elongated mitochondria in neurons

that are unable to be properly transported to processes.

Mechanistically, tau overexpression prevents the mito-

chondrial localization of a key protein driving mitochon-

drial fission, the dynamin-related GTPase DPR1, by

stabilizing actin filaments. Importantly, reversing this

mitochondrial defect rescues neurons from tau-induced

toxicity in vivo, indicating that aberrant mitochondrial

biogenesis may be the underlying cause of neurodegener-

ation in models of AD, and not a mere consequence of

degeneration, which was the prevailing scheme so far.

Additional evidence for a causal involvement of mito-

chondrial biogenesis defects in neurodegeneration stems

from the analysis of mouse mutants for the peroxisome

proliferator-activated receptor coactivator 1-a (PGC-1a).

PGC-1a was shown to be sufficient to instruct mitochon-

drial biogenesis in different tissues [22, 23], hence it is

considered a master regulator of this process. In all tissues

investigated, PGC-1a interacts with cell-type specific

transcription factors to control the transcription of key

targets required for mitochondrial biogenesis.

The first mice with a germ-line deletion of the PGC-1a
locus were described in 2004 [24] and were found to display

several neurobehavioral defects that are indicative of striatal

dysfunction, such as hyperactivity and limb clasping among

others. A closer analysis of the striatum, the brain area affected

in neurodegenerative diseases such as Huntington’s disease

with an aberrant movement component, indicated that lack of

PGC-1a results in widespread spongiform lesions. Although

these lesions represented mainly axonal degenerations, vac-

uolated neuronal bodies and gliosis were also present. Beyond

the striatum, similar but less widespread degenerations were

also detected in other brain regions, including in particular

superficial cortical layers, the thalamus, the substantia nigra

and the hippocampus. More recently, forebrain- and neuron-

specific conditional PGC-1a knockout mice were generated

[25]. Analysis of these animals also indicated widespread

lesions across the forebrain, both confirming the germ-line

mutant phenotypes and demonstrating a cell-autonomous

requirement of proper mitochondrial biogenesis in neurons.

Moreover, defective mitochondrial biogenesis, resulting from

lack of PGC-1a functionality has also been causally impli-

cated in the French Canadian variant of Leigh syndrome

(FCLS), a disease characterized by severe neurodegeneration.

Interestingly, LRP130 (leucine-rich protein 130 kDa), the

protein mutated in FCLS, constitutes a necessary component

of a PGC-1a-containing complex purified from mammalian

cell extracts [26]. Furthermore, functional analyses demon-

strated that LRP130 functions in mitochondrial biogenesis by

modulating the function of PGC-1a. Specifically, LRP130

modulates PGC-1a action on several mitochondrial subunits

encoded within the mitochondrion, but has no involvement in

regulating the expression of mitochondrial protein encoded by

nuclear genes.

Whether re-activation of the PGC-1a locus, using an

inducible in vivo system, is sufficient to restore neuronal

integrity in the brain remains to be elucidated. Similarly, it

would be interesting to explore whether restoration of

functional PGC-1a complexes in the mouse model of FCLS,

by forced expression of wild type LRP130, could ameliorate

the neuronal phenotypes, in which case, the mitochondrial

biogenesis machinery would be a great new target to explore

for developing novel therapies for neurodegenerative dis-

eases. In conclusion, while aberrant mitochondria often

ensue neuronal deterioration in a wide range of diseases,

there is compelling evidence that mitochondrial dysfunction

can also actively trigger neuronal degeneration in specific

cases, such as the ones indicatively discussed above. The

cellular context required for this still remains to be fully

elucidated. Identifying new players in the regulation of

mitochondrial function and effectively integrating this new

information with the known heterogeneity of neurons will be

crucial in deciphering the distinct impact of mitochondrial

dysfunction in diverse neuronal pools.
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