Differential adiponectin signalling couples ER stress with lipid metabolism to

modulate ageing in C. elegans

Emmanouil Kyriakakis, Nikolaos Charmpilas & Nektarios Tavernarakis

Supplementary Figures S1-S11 & Supplementary Table S1

Figure S1. *C. elegans* adiponectin receptor mutants respond differently to thapsigargin exposure. Eggs from WT, *paqr-1(tm3262)*, *paqr-2(tm3410)* and *paqr-3(ok2229)* strains were laid on plates in the absence (white bars) or presence of 15 μ M thapsigargin (black bars). Each strain was scored on four independent plates and each experiment was repeated independently at least three times. Error bars represent SEM for repeat plates within the experiment. Student *t* test values were calculated *vs*. WT + thapsigargin (*n* ~ 150; ****P* < 0.001).

Figure S2. *paqr-1* silencing increases resistance to ER stress and augments survival of ER stressed animals. (A) Eggs from WT animals were laid on plates in the presence of 5 µg/ml tunicamycin and EV or *paqr-1(RNAi)*. Percentage of eggs that developed into mature adults was scored. (B) Survival curves of WT animals subjected to EV (black) or *paqr-1(RNAi)* (red) under ER stress (5 µg/ml tunicamycin). Lifespan values are given in Table S1. (C) Mean fluorescence intensity values of 24h tunicamycin-treated (5 µg/ml), day 4 p_{hsp-4} GFP transgenic animals subjected to EV (control) or *paqr-1(RNAi)* are shown. Values represent means ± SEM **P* < 0.05; ***P* < 0.01.

Figure S3. C. elegans adiponectin receptor lesions do not perturb survival under heat stress

conditions. Survival of wild type and *paqr-1(tm3262)*, *paqr-2(tm3410)*, *paqr-3(ok2229)* mutant animals at 37 °C. The experiment was repeated independently at least three times.

Figure S4. Tunicamycin resistance. (A) Representative images illustrating survival of WT and *paqr-*1(tm3262) strains after 8 days on tunicamycin are shown. Differences on the bacterial lawn are also evident, suggesting differences in mobility and viability. Scale bar, 250 µm. White arrowheads indicate dead animals; white arrows indicate eggs that never developed into mature adults; red arrowheads indicate live animals; red arrows indicate newly hatched eggs. (B) Quantification of survival and fertility of WT (white) and *paqr-1* mutant (grey) animals in the presence of tunicamycin. Five random field areas from two plates were analysed and results are shown as means per field.

Figure S5. Longevity of adiponectin receptor mutant animals under physiological conditions.

Lifespan of *paqr-1(tm3262)* and *paqr-3(ok2229)* mutant animals was comparable to wild type animals, whereas *paqr-2(tm3410)* mutant animals survived significantly less compared to wild type animals under physiological conditions. The experiment was repeated independently at least three times at 20 °C. Lifespan values are summarized in Table S1.

Figure S6. Ultradian rhythms are not altered by either PAQR-1 depletion or ER stress. (A)

Pumping rate was not altered in *paqr-1(tm3262)*(grey bars) compared to wild type animals (white bars) in the presence or absence of 5 µg/ml tunicamycin. (B) Defecation rates were determined in the presence or absence of of 5 µg/ml tunicamycin. No significant differences were observed between *paqr-1(tm3262)* and wild type animals under these conditions. Each experiment was repeated independently at least three times.

Figure S7. ER stress does not interfere with *paqr-1* mRNA levels during aging. Wild type animals were exposed to DMSO (control; white bars) or ER stress (5 μ g/ml tunicamycin; black bars) and mRNA levels were calculated by qPCR during aging. No significant differences were observed. The experiment was repeated three times.

Figure S8. HSP-4 expression upon depletion of PAQR-1. HSP-4 expression levels of day-4 animals under control (A), or ER stress conditions (tunicamycin 5 μ g/ml, 24h) (B). (Magnified images as shown in Fig. 4; Scale bar, 100 μ m).

Figure S9. Quantification of lipid droplet size. Tunicamycin treatment leads to a reduction in the lipid surface area in *paqr-1(RNAi)*-treated animals. Values in histograms represent means \pm SEM. **P < 0.01.

Figure S10. PAQR-1 regulates ATGL-1 expression without influencing autofluorescence. (A) Representative images for both ATGL-1::GFP (GFP filter) and autofluorescence (lipofuscin) are shown. Lipofuscin-like autofluorescence can be generated and detected across a broad spectrum¹. To detect lipofuscin-like structures we used a 365, 420 nm filter set. GFP fluorescence was detected using a separate 470/40, 525/50 nm filter set. Scale bar, 20 μ m. (B) Mean fluorescence intensity values in day 3 adult VS20 (ATGL-1::GFP) animals treated with EV or *paqr-1(RNAi)*, in the presence (white) or absence of 5 μ g/ml tunicamycin (grey). Mean fluorescence intensity values for lipofuscin are also quantified. Values represent means \pm SEM ***P < 0.001.

Figure S11. Silencing of *bec-1* does not affect survival of *paqr-1* mutant animals, but is required for *hsp-4* expression. (A) Survival curves of WT (black) and *paqr-1(tm3262)* mutant (red) animals treated with *bec-1(RNAi)* (dashed) under normal conditions are presented. Lifespan values are provided in Table S1. (B) Mean fluorescence intensity values of p_{hsp-4} GFP 4-day old transgenic animals (wild type (white) or *paqr-1* mutant (grey) background) are shown in the presence of EV or *bec-1(RNAi)*. (C) Mean fluorescence intensity values of tunicamycin-treated p_{hsp-4} GFP 4-day old transgenic animals (wild type (white) (white) or *paqr-1* mutant (grey) background) are shown in the presence of EV or *bec-1(RNAi)*. (C) Mean fluorescence intensity values of tunicamycin-treated p_{hsp-4} GFP 4-day old transgenic animals (wild type (white) or *paqr-1* mutant (grey) background) are shown, in the presence of EV or *bec-1(RNAi)*. Values in histograms represent means ± SEM from experiments performed at least trice. **P* < 0.05; ***P* < 0.01; ****P* < 0.001.

Table S1. Cumulative lifespan data. Each set of lifespan analysis is associated with its corresponding figure in the text as indicated on the left of the table. Means, standard deviation of the mean (SEM) and *P* values were calculated using the log-rank test (Mantel-Cox) from Kaplan-Meier survival analysis of cumulative data obtained from the indicated numbers of animals, as described in Materials and Methods. (SEM: standard error of the mean; tun: tunicamycin; EV: empty vector/RNAi control; ns: non-significant; WT: wild type).

Vild Type (N2) par-1(m3262) tun tun 8.6 ± 0.6 11.7 ± 0.7 118/20 18/20 <0.0001 vs. WT		Genotype	Treatment	Mean ±SEM (days)	Deaths/Censored	P value
Top pagr-1(tm3262) pagr-3(bk229) tun 11.7 ± 0.7 3.7 ± 0.9 184/20 3.7 ± 0.9 <0.0001 vs. WT Viid Type (N2) pagr-3(bk229) tun n 7.0 ± 1.2 146/37 144/28 ns vs. WT viid Type (N2) pagr-3(bk229) tun (from day 7) tun (from day 7) 5.8 ± 0.5 138/25 138/25 ns vs. WT viid Type (N2) pagr-3(bk229) tun (from day 7) tun (from day 7) 5.5 ± 0.7 126/49 0.0003 vs. WT model daf-2(RNAi) 25.5 ± 1.5 160/19 39.5 ± 2.5 0.0010 vs. WT viid Type (N2) pagr-1(tm3262) EV 16.7 ± 0.3 150/17 149/12 ns vs. WT viid Type (N2) pagr-1(tm3262) EV 16.7 ± 0.3 150/17 12.2 ± 1.4 ns vs. WT viid Type (N2) pagr-1(tm3262) EV 16.3 ± 0.7 149/12 12.2 ± 1.4 ns vs. WT viid Type (N2) pagr-1(tm3262) EV 18.3 ± 0.7 175/15 177/145/17 ns vs. WT viid Type (N2) pagr-1(tm3262) Skn-1(RNAi) 11.2 ± 0.3 193/15 2.2 ± 0.3 166/19 1.2 ± 0.3 viid Type (N2) pagr-1(tm3262) Skn-1(RNAi) 12.2 ± 0.3 165/19 1.2 ± 0.3 0.0001 vs. WT	Figure 1	Wild Type (N2)	tun	8.6 ± 0.6	152/13	
pag-2(tm340) tun 3.7 ± 0.9 151/33 < 0.0001 vs. WT pag-3(b2229) tun rm 7.0 ± 1.2 146/37 ns vs. WT pag-3(b2229) tun (from day 7) 5.8 ± 0.5 138/25 ns vs. WT pag-2(tm340) tun (from day 7) 3.3 ± 0.7 128/43 0.0003 vs. WT pag-3(b2229) tun (from day 7) 5.5 ± 0.7 126/49 ns vs. WT pag-3(b2229) tun (from day 7) 5.5 ± 0.7 126/49 ns vs. WT pag-3(b2229) tun (from day 7) 5.5 ± 1.5 160/19 0.0001 vs. WT pag-1(tm3262) EV 16.7 ± 0.3 150/17 ns vs. WT yild Type (N2) daf-2(RNAi) 12.7 ± 0.7 132/23 <0.0001 vs. WT		paqr-1(tm3262)	tun	11.7 ± 0.7	184/20	< 0.0001 vs. WT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		paqr-2(tm3410)	tun	3.7 ± 0.9	151/33	< 0.0001 vs. WT
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$		paqr-3(ok2229)	tun	7.0 ± 1.2	146/37	ns vs. WT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Wild Type (N2)	tun (from day 7)	6.2 ± 0.3	144/28	
pagr-2(tm3410) pagr-3(ok2229) tun (from day 7) tun (from day 7) 3.3 ± 0.7 5.5 ± 0.7 128/43 126/49 0.0003 vs. WT ns vs. WT Total Construction daf-2(RNAi) daf-2(RNAi) 25.5 ± 1.5 39.5 ± 2.5 160/19 173/20 0.0010 vs. WT Wild Type (N2) pagr-1(tm3262) EV 16.7 ± 0.3 16.3 ± 0.7 150/17 149/12 ns vs. WT Wild Type (N2) pagr-1(tm3262) EV 16.7 ± 0.3 16.3 ± 0.7 150/17 149/12 ns vs. WT Wild Type (N2) pagr-1(tm3262) EV 16.7 ± 0.3 16.6/19 150/17 12.2 ± 1.4 ns vs. WT Wild Type (N2) pagr-1(tm3262) EV 18.3 ± 0.7 17.5/15 136/19 Wild Type (N2) pagr-1(tm3262) EV 18.3 ± 0.7 17.5/15 ns vs. daf-16(RNAi) Wild Type (N2) pagr-1(tm3262) skn-1(RNAi) 17.7 ± 0.7 145/17 <0.0001 vs. WT		pagr-1(tm3262)	tun (from day 7)	5.8 ± 0.5	138/25	ns vs. WT
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		pagr-2(tm3410)	tun (from day 7)	3.3 ± 0.7	128/43	0.0003 vs. WT
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		pagr-3(ok2229)	tun (from day 7)	5.5 ± 0.7	126/49	ns vs. WT
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. , , ,			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	e 3	Wild Type (N2)	daf-2(RNAi)	25.5 ± 1.5	160/19	
Image: The second se	gur	paar-1(tm3262)	daf-2(RNAi)	39.5 ± 2.5	173/20	0.0010 vs. WT
Wild Type (N2) paqr-1(tm3262)EV 16.7 ± 0.3 $150/17$ Wild Type (N2) paqr-1(tm3262) daf -16(RNAi) 12.7 ± 0.7 $149/12$ ns vs. WTWild Type (N2) paqr-1(tm3262) daf -16(RNAi) 12.7 ± 0.7 $132/23$ < 0.0001 vs. WTpaqr-1(tm3262) daf -16(RNAi) 12.7 ± 0.7 $132/24$ ns vs. daf -16(RNAi)Wild Type (N2) paqr-1(tm3262)EV 20.2 ± 0.3 $166/19$ Wild Type (N2) paqr-1(tm3262)EV 18.3 ± 0.7 $175/15$ ns vs. WTWild Type (N2) paqr-1(tm3262)skn-1(RNAi) 14.0 ± 1.2 $154/15$ < 0.0001 vs. WTWild Type (N2) paqr-1(tm3262)EV + tun 11.2 ± 0.3 $193/15$ < 0.0001 vs. WT and skn-1(RNAi)Wild Type (N2) paqr-1(tm3262)EV + tun 12.8 ± 0.7 $184/14$ < 0.0001 vs. WTWild Type (N2) paqr-1(tm3262)EV + tun 11.2 ± 0.3 $193/15$ $ns vs. WT; 0.093$ vs. daf -16(RNAi) + tunWild Type (N2) paqr-1(tm3262)EV + tun 11.2 ± 0.3 $193/15$ $ns vs. WT; 0.093$ vs. daf -16(RNAi) + tunWild Type (N2) paqr-1(tm3262)EV + tun 12.8 ± 0.7 $184/14$ < 0.0001 vs. WTWild Type (N2) paqr-1(tm3262)skn-1(RNAi) + tun 12.5 ± 0.5 $154/10$ < 0.0001 vs. WTWild Type (N2) paqr-1(tm3262)EV 16.7 ± 0.3 $150/17$ < 0.0001 vs. WTWild Type (N2) paqr-1(tm3262)EV 16.7 ± 0.3 $150/17$ < 0.0001 vs. WTWild Type (N2) paqr-1(tm3262)EV 16.7 ± 0.3	Fi	p=q: =(
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Wild Type (N2)	EV	16.7 ± 0.3	150/17	
Wild Type (N2) $daf-16(RNAi)$ 12.7 ± 0.7 $132/23$ $< 0.0001 \text{ vs. WT}$ $paqr-1(tm3262)$ $daf-16(RNAi)$ 12.2 ± 1.4 $112/24$ $ns vs. daf-16(RNAi)$ Wild Type (N2)EV 20.2 ± 0.3 $166/19$ $paqr-1(tm3262)$ EV 18.3 ± 0.7 $175/15$ $ns vs. WT$ Wild Type (N2) $skn-1(RNAi)$ 17.7 ± 0.7 $145/17$ $< 0.0001 vs. WT$ $paqr-1(tm3262)$ $skn-1(RNAi)$ 14.0 ± 1.2 $154/15$ $< 0.0001 vs. WT$ $paqr-1(tm3262)$ $skn-1(RNAi)$ 14.0 ± 1.2 $154/15$ $< 0.0001 vs. WT$ Wild Type (N2)EV + tun 11.2 ± 0.3 $193/15$ $paqr-1(tm3262)$ EV + tun 12.8 ± 0.7 $184/14$ $< 0.0001 vs. WT$ Wild Type (N2)EV + tun 11.2 ± 0.3 $193/15$ $paqr-1(tm3262)$ daf-16(RNAi) + tun 10.0 ± 0.5 $129/21$ $0.0002 vs. WT$ $wild Type (N2)$ EV + tun 11.2 ± 0.3 $193/15$ $paqr-1(tm3262)$ EV + tun 11.2 ± 0.3 $193/15$ $paqr-1(tm3262)$ EV + tun 11.2 ± 0.3 $193/15$ $paqr-1(tm3262)$ $skn-1(RNAi) + tun$ 9.0 ± 0.5 $154/10$ $< 0.0001 vs. WT$ Wild Type (N2) $skn-1(RNAi) + tun$ 12.5 ± 0.5 $172/18$ $0.0002 vs. WT; < 0.0001 vs. skn-1(RNAi) + tun$ $paqr-1(tm3262)$ EV 16.7 ± 0.3 $150/17$ $ns vs. WT$ Wild Type (N2)EV 16.7 ± 0.3 $150/17$ $paqr-1(tm3262)$ EV 16.3 ± 0.7 $149/12$ $ns vs. WT$ </td <td></td> <td>paqr-1(tm3262)</td> <td>EV</td> <td>16.3 ± 0.7</td> <td>149/12</td> <td>ns vs. WT</td>		paqr-1(tm3262)	EV	16.3 ± 0.7	149/12	ns vs. WT
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Wild Type (N2)	daf-16(RNAi)	12.7 ± 0.7	132/23	< 0.0001 vs. WT
\P_{y} UWild Type (N2) $paqr-1(tm3262)$ EV 20.2 ± 0.3 $166/19$ \P_{y} $paqr-1(tm3262)$ EV 18.3 ± 0.7 $175/15$ ns vs. WT Ψ $Skn-1(RNAi)$ 17.7 ± 0.7 $145/17$ < 0.0001 vs. WT $paqr-1(tm3262)$ $skn-1(RNAi)$ 14.0 ± 1.2 $154/15$ < 0.0001 vs. WT and $skn-1(RNAi)$ Ψ $Wild$ Type (N2) $EV + tun$ 11.2 ± 0.3 $193/15$ $paqr-1(tm3262)$ $EV + tun$ 12.8 ± 0.7 $184/14$ < 0.0001 vs. WT Ψ $daf-16(RNAi) + tun$ 10.0 ± 0.5 $129/21$ 0.0002 vs. WT $Paqr-1(tm3262)$ $daf-16(RNAi) + tun$ 11.2 ± 0.3 $193/15$ $Paqr-1(tm3262)$ $EV + tun$ 12.8 ± 0.7 $184/14$ < 0.0001 vs. WT $Paqr-1(tm3262)$ $EV + tun$ 12.8 ± 0.7 $184/14$ < 0.0001 vs. WT $Paqr-1(tm3262)$ $skn-1(RNAi) + tun$ 9.0 ± 0.5 $154/10$ < 0.0001 vs. WT $Paqr-1(tm3262)$ EV 16.7 ± 0.3 $150/17$ $Paqr-1(tm3262)$ EV 16.3 ± 0.7 <		paqr-1(tm3262)	daf-16(RNAi)	12.2 ± 1.4	112/24	ns vs. daf-16(RNAi)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Wild Type (N2)	EV	20.2 ± 0.3	166/19	
Y U D UWild Type (N2) $skn-1(RNAi)$ 17.7 ± 0.7 $145/17$ $< 0.0001 \text{ vs. WT}$ $paqr-1(tm3262)$ $skn-1(RNAi)$ 14.0 ± 1.2 $154/15$ $< 0.0001 \text{ vs. WT}$ and $skn-1(RNAi)$ Wild Type (N2)EV + tun 11.2 ± 0.3 $193/15$ $paqr-1(tm3262)$ EV + tun 11.2 ± 0.3 $193/15$ Wild Type (N2) $daf-16(RNAi) + tun$ 10.0 ± 0.5 $129/21$ 0.0001 vs. WT Wild Type (N2) $daf-16(RNAi) + tun$ 10.0 ± 0.5 $129/21$ 0.0002 vs. WT $paqr-1(tm3262)$ $daf-16(RNAi) + tun$ 11.2 ± 0.3 $193/15$ $ns vs. WT; 0.093 vs. daf-16(RNAi) + tun$ Wild Type (N2)EV + tun 11.2 ± 0.3 $193/15$ $ns vs. WT; 0.093 vs. daf-16(RNAi) + tun$ Wild Type (N2)EV + tun 11.2 ± 0.3 $193/15$ $paqr-1(tm3262)$ $skn-1(RNAi) + tun$ 9.0 ± 0.5 $154/10$ $< 0.0001 \text{ vs. WT}$ Wild Type (N2) $skn-1(RNAi) + tun$ 9.0 ± 0.5 $154/10$ $< 0.0001 \text{ vs. WT}$ $paqr-1(tm3262)$ $skn-1(RNAi) + tun$ 12.5 ± 0.5 $172/18$ $0.0002 \text{ vs. WT}; < 0.0001 \text{ vs. skn-1}(RNAi) + tun$ Wild Type (N2)EV 16.7 ± 0.3 $150/17$ $ns vs. WT$ Wild Type (N2)EV 16.3 ± 0.7 $149/12$ $ns vs. WT$ Wild Type (N2) $laa-1(RNAi)$ 13.8 ± 0.7 $163/6$ $< 0.0001 \text{ vs. WT}$		paqr-1(tm3262)	EV	18.3 ± 0.7	175/15	ns vs. WT
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Wild Type (N2)	skn-1(RNAi)	17.7 ± 0.7	145/17	< 0.0001 vs. WT
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	paqr-1(tm3262)	skn-1(RNAi)	14.0 ± 1.2	154/15	< 0.0001 vs. WT and <i>skn-1(RNAi)</i>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Figure	Wild Type (N2)	EV + tun	11.2 ± 0.3	193/15	
Wild Type (N2) paqr-1(tm3262) $daf-16(RNAi) + tun$ 10.0 ± 0.5 $129/21$ 0.0002 vs. WT ns vs. WT; $0.093 \text{ vs. } daf-16(RNAi) + tun$ Wild Type (N2) paqr-1(tm3262)EV + tun 11.2 ± 0.3 $193/15$ paqr-1(tm3262)EV + tun 12.8 ± 0.7 $184/14$ $< 0.0001 \text{ vs. WT}$ Wild Type (N2) paqr-1(tm3262) $skn-1(RNAi) + tun$ 9.0 ± 0.5 $154/10$ $< 0.0001 \text{ vs. WT}$ Wild Type (N2) paqr-1(tm3262) $skn-1(RNAi) + tun$ 12.5 ± 0.5 $172/18$ $0.0002 \text{ vs. WT}; < 0.0001 \text{ vs. } skn-1(RNAi) + tun$ Wild Type (N2) paqr-1(tm3262)EV 16.7 ± 0.3 $150/17$ 16.3 ± 0.7 $149/12$ ns vs. WTWild Type (N2) Wild Type (N2)Image: Note that the state that the s		paqr-1(tm3262)	EV + tun	12.8 ± 0.7	184/14	< 0.0001 vs. WT
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Wild Type (N2)	<i>daf-16(RNAi)</i> + tun	10.0 ± 0.5	129/21	0.0002 vs. WT
Wild Type (N2) paqr-1(tm3262)EV + tun EV + tun 11.2 ± 0.3 12.8 ± 0.7 $193/15$ $184/14$ < 0.0001 vs. WT < 0.0001 vs. WT $0.0001 vs. WT$ Wild Type (N2) paqr-1(tm3262) $skn-1(RNAi) + tun$ $skn-1(RNAi) + tun$ 9.0 ± 0.5 12.5 ± 0.5 $154/10$ 12.5 ± 0.5 < 0.0001 vs. WT $0.0002 vs. WT; < 0.0001 vs. skn-1(RNAi) + tun$ Wild Type (N2) paqr-1(tm3262)EV EV 16.7 ± 0.3 16.3 ± 0.7 $150/17$ $149/12$ Wild Type (N2) Wild Type (N2)EV $lag-1(RNAi)$ 13.8 ± 0.7 $163/6$ 13.8 ± 0.7		paqr-1(tm3262)	daf-16(RNAi) + tun	11.8 ± 0.5	155/19	ns vs. WT; 0.093 vs. <i>daf-16(RNAi)</i> + tun
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Wild Type (N2)	EV + tun	11.2 ± 0.3	193/15	
Wild Type (N2) paqr-1(tm3262) $skn-1(RNAi)$ + tun 9.0 ± 0.5 12.5 ± 0.5 $154/10$ $172/18$ < 0.0001 vs. WT 0.0002 vs. WT; < 0.0001 vs. skn-1(RNAi) + tunWild Type (N2) paqr-1(tm3262)EV 16.7 ± 0.3 16.3 ± 0.7 $150/17$ $149/12$ ns vs. WT < 0.0001 vs. WT $Wild Type (N2)wild Type (N2)EV16.3 \pm 0.713.8 \pm 0.7149/12163/6ns vs. WT< 0.0001 vs. WT$		pagr-1(tm3262)	EV + tun	12.8 ± 0.7	184/14	< 0.0001 vs. WT
paqr-1(tm3262)skn-1(RNAi) + tun12.5 \pm 0.5172/180.0002 vs. WT; < 0.0001 vs. skn-1(RNAi) + tunWild Type (N2)EV16.7 \pm 0.3150/17paqr-1(tm3262)EV16.3 \pm 0.7149/12ns vs. WTWild Type (N2)Jag-1(RNAi)13.8 \pm 0.7163/6< 0.0001 vs. WT		Wild Type (N2)	<i>skn-1(RNAi)</i> + tun	9.0 ± 0.5	154/10	< 0.0001 vs. WT
Wild Type (N2) EV 16.7 ± 0.3 150/17 paqr-1(tm3262) EV 16.3 ± 0.7 149/12 ns vs. WT Wild Type (N2) Jag-1(RNAi) 13.8 ± 0.7 163/6 < 0.0001 vs. WT		paqr-1(tm3262)	skn-1(RNAi) + tun	12.5 ± 0.5	172/18	0.0002 vs. WT; < 0.0001 vs. <i>skn-1(RNAi)</i> + tun
Wild Type (N2) EV 16.7 ± 0.3 150/17 pagr-1(tm3262) EV 16.3 ± 0.7 149/12 ns vs. WT Wild Type (N2) Jag-1(RNAi) 13.8 ± 0.7 163/6 < 0.0001 vs. WT					-	
paqr-1(tm3262) EV 16.3 ± 0.7 149/12 ns vs. WT Wild Type (N2) Jag-1(RNAi) 13.8 ± 0.7 163/6 < 0.0001 vs. WT	Figure 7	Wild Type (N2)	EV	16.7 ± 0.3	150/17	
Wild Type (N2) $ ag-1(RNAi) $ 13.8 ± 0.7 163/6 < 0.0001 vs. WT		paqr-1(tm3262)	EV	16.3 ± 0.7	149/12	ns vs. WT
		Wild Type (N2)	lgg-1(RNAi)	13.8 ± 0.7	163/6	< 0.0001 vs. WT
▶ paqr-1(tm3262) gg-1(RNAi) 14.3 ± 0.7 143/13 < 0.0001 vs. WT; ns vs. lgg-1(RNAi)		paqr-1(tm3262)	lgg-1(RNAi)	14.3 ± 0.7	143/13	< 0.0001 vs. WT; ns vs. <i>lgg-1(RNAi)</i>
5 Wild Type (N2) EV + tun 11.2 ± 0.3 193/15		Wild Type (N2)	EV + tun	11.2 ± 0.3	193/15	
ີ້ <i>paqr-1(tm3262)</i> EV + tun 12.8 ± 0.7 184/14 < 0.0001 vs. WT		paqr-1(tm3262)	EV + tun	12.8 ± 0.7	184/14	< 0.0001 vs. WT
Wild Type (N2) Igg-1(RNAi) + tun 9.0 ± 0.5 156/19 < 0.0001 vs. WT		Wild Type (N2)	<i>lgg-1(RNAi)</i> + tun	9.0 ± 0.5	156/19	< 0.0001 vs. WT
paqr-1(tm3262) lgg-1(RNAi) + tun 9.5 ± 0.5 176/20 < 0.0001 vs. WT; 0.0025 vs. lgg-1(RNAi)		paqr-1(tm3262)	<i>lgg-1(RNAi)</i> + tun	9.5 ± 0.5	176/20	< 0.0001 vs. WT; 0.0025 vs. <i>lgg-1(RNAi)</i>
EV tup 7.0 65/7		EV/	tup	7.0	65/7	
$\frac{1}{2} \frac{1}{2} \frac{1}$	Figure S2		turi	7.0	/ /כס קו /ר	< 0.02 viz. EV/
$ \begin{array}{c c} \circ & paqr - 1(KiVAI) & \text{tun} & 8.0 & 71/5 & <0.02 \text{ VS. EV} \\ \end{array} $		paqr-1(KNAI)	tun	8.0	/1/5	< U.UZ VS. EV
$\frac{1}{2}$ EV Tun (trom day /) 5.0 68/14			tun (from day 7)	5.0	68/14	
$\frac{1}{1000} pagr-1(KIVAI) \qquad tun (trom day 7) \qquad 5.0 \qquad 67/18 \qquad ns vs. EV$		paqr-1(KNAI)	tun (from day 7)	5.0	67/18	ns vs. Ev

	Wild Type (N2)	DMSO	19.8 ± 0.7	166/9	
ure S5	paqr-1(tm3262)	DMSO	19.3 ± 0.3	185/18	ns vs. WT
	paqr-2(tm3410)	DMSO	16.2 ± 0.2	133/29	0.0025 vs. WT
Figi	paqr-3(ok2229)	DMSO	17.8 ± 0.7	127/45	ns vs. WT
11	Wild Type (N2)	EV	20.2 ± 0.3	166/19	
gure S:	paqr-1(tm3262)	EV	18.3 ± 0.7	175/15	ns vs. WT
	Wild Type (N2)	bec-1(RNAi)	18.0 ± 1.0	115/23	ns vs. WT
Fiε	paqr-1(tm3262	bec-1(RNAi)	15.5 ± 1.5	121/21	0.0016 vs. WT; ns vs. <i>bec-1(RNAi)</i>

References

1 Schnell, S. A., Staines, W. A. & Wessendorf, M. W. Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. *J Histochem Cytochem* **47**, 719-730, doi:10.1177/002215549904700601 (1999).