Table S1. List of transgenic flies used in the study.

Gal4 driver	Tissue specificity
Elav ${ }^{\text {c155 }}$ (BDSC458)	Nervous system
$129 Y$ (BDSC:30816)	Antennal nerves and subesophageal ganglia
GH146 (BDSC:3026)	Antennal lobes
OK107 (BDSC:854)	Mushroom bodies
C232 (BDSC:30828)	Ellipsoid bodies
C601 (BDSC:30844)	Protocerebrum
C205 (BDSC:30826)	Fan shaped body and subesophageal ganglia
Nmdar2 (BDSC:46860)	NMDA receptor expressing cells
Dilp2 (BDSC:37516)	Insulin-like peptide 2 expressing cells
R29H01 (BDSC:47343)	Prothoracic gland innervating cells
Trh (BDSC:38389)	Serotonergic cells
ElavGS (BDSC:43642)	Nervous system (mifepristone inducible)
Sca (BDSC:6479)	Epidermis
C929 (BDSC:25373)	Peptidergic cells
5htr7 (by C. Nichols)	$5 H T R 7$ serotonin receptor expressing cells
UAS line	Effect on gene expression
UAS-SggS9A (BDSC:5255)	Constitutive expression
UAS-S6K ${ }^{\text {STDETE }}$ (by L. Partridge)	Constitutive expression
UAS-5htr7 (by J. Dow)	Overexpression
UAS-atg1 (BDSC:51654)	Overexpression
UAS-gfpsert (BDSC:24463)	Overexpression
UAS-cd8rfp (BDSC:27392)	Overexpression
UAS-Epac1-camps (BDSC:25408)	Overexpression
UAS-sytegfp (BDSC:6925)	Overexpression
UAS-atg1RNAi (VDRC:16133)	Inhibition
UAS-sertRNAi (VDRC:100584)	Inhibition
UAS-5htr7RNAi (VDRC:104804)	Inhibition
UAS-atg7RNAi (VDRC:27432)	Inhibition
UAS-5htr1bRNAi (VDRC:110128)	Inhibition
UAS-nmdar2RNAi (VDRC:12187)	Inhibition
UAS-caspase3RNAi (VDRC:43028)	Inhibition
UAS-rutabagaRNAi (VDRC:5569)	Inhibition
UAS-pka ${ }^{\text {c1 }}$ RNAi (VDRC:31599)	Inhibition

The Gal4 and UAS transgenic Drosophila lines used in the study.

Figure S1. ATG7 is not required for rapamycin-induced behaviours.
a.

a-tubulin

b.

C.

d.

e.

f.

g.

learning
delay

\qquad
\qquad behavior \qquad activity

h.

a) Acute rapamycin treatment (four days) of ten-day old female mated flies decreases phosphorylation of p70S6K at T398.
b) AKT1 phosphorylation at T342 in Drosophila heads is not affected by rapamycin feeding.
c) LiCl treatment (three-day feeding) induces similar to rapamycin treatment effects on behaviour, while constitutive GSK-3 β activation causes opposite to rapamycin treatment effects $(\mathrm{n}=3)$. Ten-day old mated female flies were used. For fear-like behaviour: $F(5,12)=18.87$, for explorative activity: $F(5,12)=51.27$. One-way ANOVA, individual comparisons by Sidak's multiple comparisons test.
d) Rapamycin treatment (four-days) affects cognition/behaviour via neuronal mTORC1 ($n=5$). Ten-day old mated female flies were used. For learning delay: $\mathrm{F}(5,24)=24.40$, for LTM: $\mathrm{F}(5$, $24)=22.60$, for fear-like behaviour: $F(5,24)=21.30$, for explorative activity: $F(5,24)=32.84$. One-way ANOVA, individual comparisons by Sidak's multiple comparisons test.
e) elavGS;UAS-atg1RNAi adults exhibited restricted loss of eyes' pigmentation in the absence of mifepristone.
f) Mifepristone-induced neuronal atg1 expression throughout development caused lethality. Very few death escapers had reduced size. Left side: elavGS;UAS-atg1 male fed with normal food. Right side: elavGS;UAS-atg1 male fed with mifepristone-enriched food.
g) RNAi of atg7 does not blunt rapamycin effects on behaviour ($\mathrm{n}=3$). Ten-day old flies were fed with rapamycin for four days. For learning delay: $F(5,12)=34.70$, for $\operatorname{LTM}: F(5,12)=17.68$, for fear-like behaviour: $F(5,12)=48.17$, for explorative activity: $F(5,12)=33.33$. One-way ANOVA, individual comparisons by Sidak's multiple comparisons test.
h) Ellipsoid bodies-specific ATG7 is not required for atg1-induced behaviours ($\mathrm{n}=3$). Three-day old flies were used. For learning delay: $F(4,10)=26.60$, for $\operatorname{LTM}: F(4,10)=9.731$, for fear-like behaviour: $F(4,10)=21.75$, for explorative activity: $F(4,10)=12.96$. One-way ANOVA, individual comparisons by Sidak's multiple comparisons test, selected pairs: c232;UAS-atg1 vs. c232;UAS-atg1;UAS-atg7RNAi.
${ }^{* * *} p<0.001,{ }^{* *} p<0.01$, and ${ }^{*} p<0.05$. Error bars represent s.e.m.

Figure S2. 5htr7 inhibition ameliorates low nutrient diet-evoked cognitive and behavioural effects.

5htr7 inhibition ameliorates low nutrient diet-evoked cognitive and behavioural effects ($\mathrm{n}=5$).
Ten-day old flies were fed with low nutrient food for two days. For learning delay: F (5, 24) $=21.19$, for LTM: $F(5,24)=8.02$, for fear-like behaviour: $F(5,12)=7.37$, for explorative activity: F $(5,24)=39.67$. One-way ANOVA, individual comparisons by Sidak's multiple comparisons test.
${ }^{* * *} p<0.001,{ }^{* *} p<0.01$, and ${ }^{*} p<0.05$. Error bars represent s.e.m.

Figure S3. Serotonergic cells-specific and SERT inhibition increases 5HTR7 levels in Drosophila heads.
a.

 - Rapamycin

O trh;
\mathbf{x} UAS-5htr7RNAi; + © trh;UAS-5htr7RNAi
b.

Otrh;+

+ UAS-atg1; +
© trh;UAS-atg1

5HTR7

a-tubulin
c.

learning
delay
:---
behavior
:---:
activity

d.

O trh;'
\times UAS-sertRNAi; +
$\boldsymbol{\theta}$ trh;UAS-sertRNAi

a) Serotonin-producing cells-specific $5 h t r 7 R N A i$ expression did not block rapamycin effects $(n=3)$. Ten-day old flies were fed with rapamycin for four days. For learning delay: $F(5,12)=$ 27.80, for LTM: $F(5,12)=10.68$, for fear-like behaviour: $F(5,12)=13.73$, for explorative activity: $\mathrm{F}(5,12)=28.88$. One-way ANOVA, individual comparisons by Sidak's multiple comparisons test.
b) Trh;UAS-atg1 flies have increased expression of 5HTR7 in the heads. 3-day old flies were used.
c) Acute (two days) Prozac treatment $(100 \mu \mathrm{M})$ of ten-day old $W^{\text {Dah }}$ flies induces similar to rapamycin treatment effects on behaviour and cognition ($n=3$). Individual comparisons by twotailed Mann Whitney test.
d) Inhibition of serotonin transporter via RNAi increases 5HTR7 levels in Drosophila heads. 3day old flies were used.
${ }^{* * *} p<0.001,{ }^{* *} p<0.01$, and ${ }^{*} p<0.05$. Error bars represent s.e.m.

Figure S4. RNAi inhibition of 5htr7 at NMDAR2-expressing cells ameliorates rapamycin effects on behaviour/cognition.
a.

b.

C.

a) Nmdar2 is mainly expressed the ellipsoid bodies and fan-shaped body in Drosophila brain (dissected brain of nmdar2:UAS-sytegfp flies, posterior view).
b) Behaviour and cognitive performance of flies with RNAi inhibition of 5htr7 at NMDAR2expressing cells are not affected by rapamycin ($n=5$). Ten-day old flies were treated for four days with rapamycin. For learning delay: $F(5,24)=27.58$, for $\operatorname{LTM}: F(5,24)=15.44$, for fearlike behaviour: $F(5,24)=16.89$, for explorative activity: $F(5,24)=44.22$. One-way ANOVA, individual comparisons by Sidak's multiple comparisons test.
${ }^{* * *} \mathrm{p}<0.001,{ }^{* *} \mathrm{p}<0.01$, and ${ }^{*} \mathrm{p}<0.05$. Error bars represent s.e.m.
c) Paneuronal RNAi inhibition of $5 h t r 1 b$ increased Tyr1472 phosphorylation of NMDAR2 receptor, while it did not inhibit rapamycin-induced de-phosphorylation of NMDAR2 in Drosophila heads. Ten-day old flies were rapamycin-treated for four days.

Figure S5. T-maze and learning protocol for zebrafish analysis.
a.
b.

C.

Fed at the long arm
Fed at the choice arm
a-b) T-maze and learning protocol.
c) Zebrafish learns to locate food sources after training and retain relative memory for at least six days after the end of training. Two-tailed Mann Whitney test ($n=8$).
${ }^{* *} p<0.01$, and ${ }^{*} p<0.05$. Error bars represent s.e.m.

