Supplementary materials

Extended Figure S1.

Extended Figure S1. SMRT sequencing identified 6 mA sites in the C. elegans mitochondrial genome isolated at the adult stage of day 5.6 mA sites are indicated by red asterisks. These sites scatter almost evenly along the mtDNA.

Extended Figure S2.

Extended Data Figure S2. LC-MS/MS chromatogram of $\mathbf{6 m A}$ levels in the mtDNA isolated from nematodes at adult stages of days 1 and 7. Figure shows the selected ion chromatograms of $m / z 150.08$ from the MS/MS fragmentation of $m / z 266.1$ at a transfer collision energy of 17 V . mtDNA was isolated from genomic samples. The young sample at adult age of day 1 (red line) shows basal ("noise") levels of $6 \mathrm{~mA}(0.55 \mathrm{fmol} / 1000 \mathrm{ng}$ DNA). The aged sample at adult age of day 7 (black line) displays much higher 6 mA levels (3.81 $\mathrm{fmol} / 1000 \mathrm{ng}$ DNA). Optimized settings of the Waters Select Series IMS mass spectrometer used for the LC-MS/MS detection of 6 mA were as follows:
Capillary voltage: 2.80 kV
Cone voltage: 20 V
Source offset: 30 V
Source temperature: $120^{\circ} \mathrm{C}$
Cone gas flow: $20 \mathrm{~L} /$ hour
Desolvation gas flow: 800 L/hour
Desolvation temperature: $400^{\circ} \mathrm{C}$
Nebuliser gas flow: 6 bar
Body gradient: 10 V
Head gradient: 20 V
Ion guide 1 offset: 3.0 V
Ion guide 2 offset: 0.3 V
Quadrupole ion energy: 0.4 V
Pre-filter: 2.0 V
Trap CE: 6.0 V
Transfer CE: 17.0 V
Trap TW velocity: $300 \mathrm{~m} / \mathrm{s}$
Trap TW pulse height: 1.0 V
Trap Entrance: 2.0 V

Trap bias: 2.0 V
Post Trap gradient: 1.0 V
Post Trap bias: 35.0 V
Collision gas: $3.5 \mathrm{ml} / \mathrm{min}$
StepWave RF: 200 V
Ion guide RF: 300 V
Transfer RF: 200 V
Start mass: m/z 100
End mass: m/z 280
Scan time: 0.5 s
Optic mode: V-Mode
Polarity: Positive

Extended Data Figure S3.

Extended Data Figure S3. Calibration of the LC-MS/MS analysis. Linear calibration between 0.1 amol and 10 fmol was applied using synthetic 6 mA . Intensity measured in counts per second (cps). For calibration we used the linear regression method. The dotted line indicates the regression line, where a good correlation $\left(R^{2}>0,999\right)$ was observed. R^{2} is the square of the correlation, it measures the proportion of variation in the dependent variable that can be attributed to the independent variable.

Extended Figure S4.

Extended Data Figure S4. Transcript levels in Tet-RNAi and Mt2-RNAi flies. Drosophila RNAi strains containing UAS responder lines were crossed with Tub-Gal4 driver lines. GAPDH was used as an internal control. Control strain refers to w1118 genotype. Tet-RNAi did not decrease Tet transcript levels. The RNAi construct is miRNA-based, so it can cause a translational block. Animals were maintained at $25^{\circ} \mathrm{C}$. Both $M t 2$-RNAi constructs significantly decreased Mt2 transcript levels. Animals were kept at $29^{\circ} \mathrm{C}$.

Extended Data Table S1. Statistical data.

Background	Primer	Adult age (days)	Trials	Mean of relative 6mA level	\pm SD	One -way ANOVA with Tukey Post Hoc Test, \mathbf{P} value	Significance level
Figure 2							
C. elegans wild-type	Ce_mito3	1	3	1.000	0.344	control	
		4	3	2.589	0.490	$\begin{aligned} & \text { vs. 1. day } \\ & \mathrm{P}=0.0041 \\ & \hline \end{aligned}$	**
		7	3	4.593	0.178	$\begin{aligned} & \hline \text { vs. 4. day } \\ & \mathrm{P}=0.0057 \end{aligned}$	**
		9	3	5.820	0.092	$\begin{aligned} & \hline \text { vs. } 7 . \text { day } \\ & \mathrm{P}=0.1238 \\ & \hline \end{aligned}$	NS
		12	3	7.636	0.136	$\begin{aligned} & \text { vs. } 9 \text {. day } \\ & \mathrm{P}=0.0137 \\ & \hline \end{aligned}$	*
	Ce_mito4		3	1.000	0.119	control	-
		4	3	3.033	0.259	vs. 1. day $\mathrm{P}<0.001$	***
		7	3	4.955	0.152	vs. 4. day $\mathrm{P}<0.001$	***
		9	3	6.448	0.201	vs. 7. day $\mathrm{P}<0.001$	***
		12	3	7.902	0.232	vs. 9. day $\mathrm{P}<0.001$	***
Figure 2							
C. elegans daf-2	Ce_mito3	1	3	1.000	0.149	control	-
		4	3	2.525	0.938	$\begin{aligned} & \hline \text { vs. 1. day } \\ & \mathrm{P}=0.2158 \end{aligned}$	NS
		9	3	3.655	1.043	$\begin{aligned} & \hline \text { vs. 4. day } \\ & \mathrm{P}=0.4934 \\ & \hline \end{aligned}$	NS
		12	3	5.101	0.770	$\begin{aligned} & \text { vs. 9. day } \\ & \mathrm{P}=0.2589 \\ & \hline \end{aligned}$	NS
		16	3	6.920	0.712	$\begin{aligned} & \text { vs. 12. day } \\ & \mathrm{P}=0.1040 \end{aligned}$	NS
		20	3	8.258	0.644	$\begin{aligned} & \text { vs. 16. day } \\ & \mathrm{P}=0.1040 \\ & \hline \end{aligned}$	NS
	Ce_mito4	1	3	1.000	0.566	control	
		4	3	2.414	0.402	$\begin{aligned} & \hline \text { vs. 1. day } \\ & \mathrm{P}=0.0026 \\ & \hline \end{aligned}$	**
		9	3	4.340	0.326	$\begin{aligned} & \text { vs. 4. day } \\ & \text { P=0 0nop } \end{aligned}$	***
		12	3	5.254	0.289	$\begin{aligned} & \text { vs. } 9 \text {. day } \\ & \mathrm{P}=0.0038 \\ & \hline \end{aligned}$	**
		16	3	7.193	0.583	$\begin{gathered} \text { vs. 16. day } \\ \mathrm{P}=0.0205 \end{gathered}$	*
Figure 4A'							
D. melanogaster	Dm_mito2	1	5	1.000	0.086	-	-
		10	5	4.351	0.621	$\begin{aligned} & \hline \text { vs. 1. day } \\ & \mathrm{P}=0.0019 \end{aligned}$	**

Background	Primer	Adult age	Mean of relative $\mathbf{6 m A}$ level	\pm SD	Independent T- test (with Levene's test), \mathbf{P} value	Significance level
dog	Cl_mito2	young group (1 and 4 years)	2.028	1.065	control	-
old group (12 and 15 years)	5.747	1.191	vs. control $\mathrm{P}=0.0025$	$* *$		

Extended Data Table S2. Statistical data for Figure 3.

Background	Adult age (days)	Trials	6mA level (fmol/1000ng)	\pm SD	Statistic	Significance level
Figure 3						
C. elegans	1	1	0.55	-	-	-
	7	1	3.81	-	-	-

