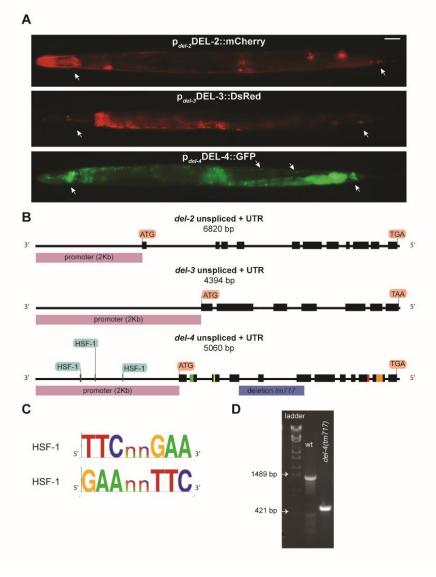
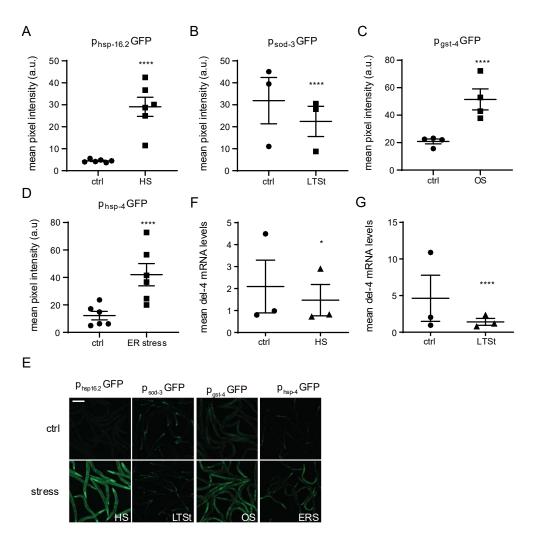
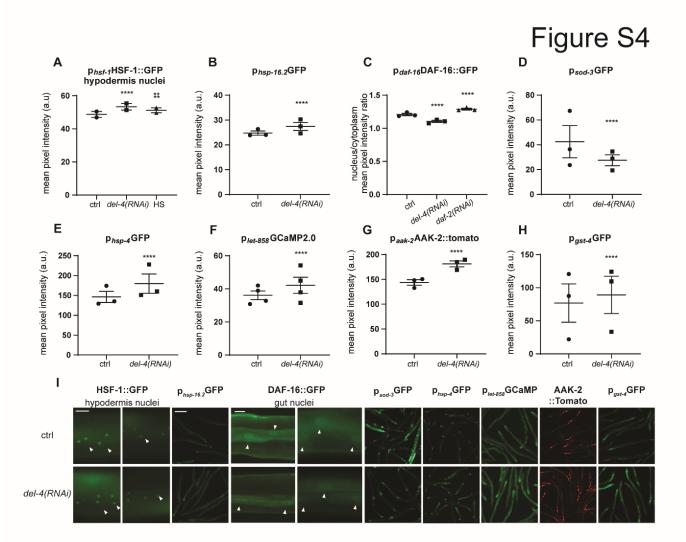
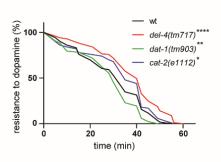
iScience, Volume 26

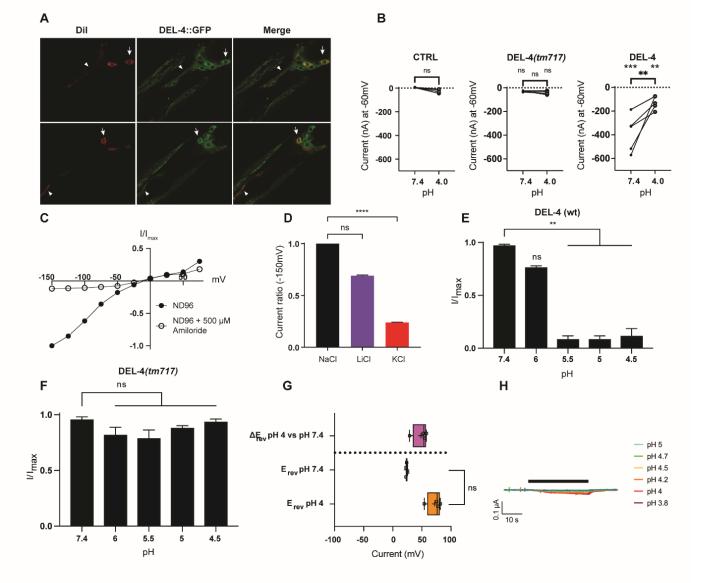

Supplemental information

A proton-inhibited DEG/ENaC ion channel


maintains neuronal ionstasis and promotes


neuronal survival under stress


Dionysia Petratou, Martha Gjikolaj, Eva Kaulich, William Schafer, and Nektarios Tavernarakis



A	p _{del-2} DsRed	Neuronal GFP reporters	Merge	С	p _{del-4} Cherry	Neuronal GFP reporters	Merge
	Ż	flp-8	ASE → 🍋			fip-8	ASE ->
		osm-10	ASIR +		4 N	flp-8	PVM
		osm-10	ASIL		, Arris	osm-10	ASIR
	•	• osm-10	PHA PHB		* (₁ 4) 	osm-10	ASHL
26	N	>> osm-10	рна 🔭 рнв			e osm-10	ASIL 🖈
	t in	-	1		- 1 - 1 - 1	osm-10	
H		dat-1	CEPDR				PHAL
	1 de la	dat-1	CEPDL		de-	dat-1	ADER
в	p _{del-3} DsRed	Neuronal GFP reporters	Merge)/	CEPVL/R
	્યાં	fip-8	ASE >		18	dat-1	395
	\$4,	osm-10	PHA/B/C		1		ADEL ->
	.1.5	2			19	dat-1	CEPDL
	- 747 /	dat-1	CEPDR		l-	dat-1	CEPDR
	ار خد می	all a	CEPVL	*		dat-1	← PDE
	1.7	dat-1	CEPDL		la de la compañía de	44	NSMR
	*	dat-1	PDE 🥕 💌	1	14	tph-1	fill?
	-,*	tph-1	NSMR		/	acr-2	VAVB, DA/B

Supplemental Figure Legends

Figure S1. Expression pattern and gene structure of *del-2*, *del-3* and *del-4*, Related to Figures 1 and 2.

(A) All three DELs are expressed in neuronal cells of the head and tail of *C. elegans*. In addition, DEL-4 localizes to a series of neurons along the *C. elegans* body. Epifluorescence images of lines expressing the *del-2*, *del-3* and *del-4* translational reporters. Arrows indicate sites of expression. Lens 20x. We captured images from the head, midbody, and tail regions and aligned them using Adobe Photoshop CS5 to illustrate the entire animal. Left is anterior. Scale bar 50 μm.

(B) Genetic loci of del-2, del-3 and del-4 genes. Black boxes, starting from ATG until the stop codon, indicate the exons. Upstream of ATG is designated the 2 kb of the promoter region (pink box) and binding sites of HSF-1 transcription factor in the *del-4* promoter (cyan boxes). Site of deletion identified in the *del-4(tm717)* mutant is indicated with blue box below the *del-4* open reading frame. The deletion site in the *del-4* gene induce the development of premature stop codon immediately after the missing sequence. Representation of coding regions that correspond to protein domains is shown in green, yellow, red, and orange, respectively. The green region represents the first transmembrane domain, the yellow box denotes the post-M1 domain, the red region corresponds to the pre-M2 domain and the orange box denotes the second transmembrane domain. The region between the two transmembrane domains corresponds to the extracellular domain. We retrieved the DNA sequences and exon/intron annotations from WormBase (https://wormbase.org//). We utilized the bioinformatics tool Phobius (https://phobius.sbc.su.se/) (see KRT) to estimate the transmembrane domains. Annotation of the *del-2* sequence corresponded to that of isoform 1. Transcription factor binding sites in the promoter region of *del-4* correspond only to the forward direction. We employed the software product SnapGene (KRT) for editing and annotating the DNA sequences.

(C) DNA sequences previously identified as HSF-1 binding sites (1). To generate DNA sequence logos, we used the WEBLOGO application (<u>https://weblogo.berkeley.edu/</u>) (2). Letter n represents any nucleotide.

(D) Agarose gel electrophoresis image of PCR products for the *del-4 gene*, using as template genomic DNA isolated from wt and *del-4(tm717)* mutant animals. We used 1% w/v agarose gel

stained with ethidium bromide. We used primers flanking the DNA region *del-4* mutations to amplify the genomic DNA. Predicted band sizes: wt 1404 bp, *del-4(tm717)* 498 bp. We generated the ladder by digesting λ phage DNA with Styl.

Figure S2. Neuronal expression of DEL-2, DEL-3 and DEL-4, Related to Figure 1.

(A) Expression pattern of DEL-2 in chemosensory and dopaminergic neurons (ASE, ASH, ASI, PHA, PHB, and CEPDL/R) (Tables S2 and S3).

(B) DEL-3 expression in chemosensory, dopaminergic, and serotonergic neurons (ASE, PHA, PHB, PHC, CEPDL/R, CEPVL, ADEL, PDE, and NSMR/L) (Tables S2 and S3).

(C) Localization of DEL-4 in amphid, phasmid, dopaminergic, serotonergic, mechanosensory and cholinergic motor neurons (ASE, ASI, ASH and PHA, PVM, CEPDL/R, CEPVL/R, ADEL/R, PDE, NSMR, VA/B, DA/B) (Tables S2 and S3).

(A-C) Confocal images (Z-stacks) of strains co-expressing mCherry or DsRed under the *del-2*, *del-3* or *del-4* promoters (left in each panel seen in red) and GFP driven by *flp-8*, *osm-10*, *dat-1*, *tph-1* or *acr-2* promoters (middle seen with green). Promoters of *flp-8* and *osm-10* drive expression in the sensory neurons, ASE, URX, PVM and ASH, ASI, PHA, PHB, respectively. The promoter of *dat-1* drives the expression of GFP in the dopaminergic neurons (CEPD, CEPV, ADE, PDE), the *tph-1* promoter in the sensoror neurons (VA/B, DA/B. (right) The right column of each panel corresponds to merged images. We utilized merged images of z-stacks to assess colocalization. One day adult animals. Arrows indicate neuronal cell somas where mCherry or DsRed is co-expressed with GFP. Lens 40x. Left is anterior. Scale bar 20 μM.

Figure S3. Control experiments for stress-induction assays, Related to Figure 2.

(A) Heat stress for 2.5 hrs at 37 °C and O/N recovery induces the expression of the heat shock chaperone HSP-16.2. We measured the fluorescence intensity from the whole body of animals expressing the transcriptional reporter $p_{hsp-16.2}$ GFP upon control temperature (20 °C) and HS. (B) Long-term starvation for 24 hrs reduces SOD-3 expression levels. The mean fluorescence intensity was measured from the whole body of well-fed and starved animals expressing the p_{sod-3} GFP transcriptional reporter.

(A, B) We applied stress on day one of adulthood and imaged the animals on day two. (C) Induction of GST-4 expression after treatment for 24 hrs with paraquat plated on OP50seeded NGM plates to a final concentration of 8 mM. We measured the expression levels of GST-4 from the whole body of animals expressing the p_{gst-4} GFP transcriptional reporter, upon control conditions and oxidative stress.

(D) HSP-4 expression levels increase after 24 hrs of treatment with 5 μ g/ml tunicamycin plated on OP50-seeded NGM plates. We used animals expressing the transcriptional reporter p_{hsp-} ₄GFP and measured mean fluorescence intensity from the entire animal.

(C, D) We placed animals at the L4 stage on paraquat or tunicamycin and imaged them on day one of adulthood.

(F, G) Reduced *del-4* mRNA levels upon HS and LTSt. We measured with RT-PCR the mean *del-4* mRNA levels, using as template cDNA from 2-day adult wt animals upon control conditions, HS and LTSt. We isolated total mRNA from wt animals (control and stressed, reversely transcribed it into complementary DNA (cDNA) and used it as template for RT-PCR. Dot plot, dots represent the mean *del-4* mRNA levels from independent biological replicates. We performed 3 independent biological replicates and for each biological we performed three technical replicates.

(E) Representative images of indicated reporters upon control and stress conditions. 5x lens. Scale bar 200 μm.

(A-D) Dot plots, dots represent the mean fluorescence of independent biological replicates. n represents the number of animals.

(F-G) Dot plots, dots represent the mean mRNA levels of independent biological replicates. (A-D, F,G) Error bars represent SEM. ns p=0.1234, *p=0.0332, **p=0.0021, ***p=0.0002, ****p<0.0001. Two-way ANOVA analysis.

(A) ctrl n=141, HS n=119, (B) ctrl n=110, LTSt n=80, (C) ctrl n=103, OS n=80, (D) ctrl n=57, ERS n=62.

Figure S4. DEL-4 deficiency interferes with activation of distinct stress responses Related to Figure 3.

(A) HSF-1 expression levels in hypodermis nuclei increased upon *del-4(RNAi)*. We measured the mean fluorescence intensity of hypodermis nuclei of animals expressing the p_{hsf-1} HSF-1::GFP construct. We overlooked the nuclei located above the gut to avoid intestinal autofluorescence. The expression levels of HSF-1 upon HS treatment served as the positive control.

(B) Depletion of *del-4* with RNAi increases the expression levels of the HSF-1 target HSP-16.2. We used the $p_{hsp-16.2}$ GFP transcriptional reporter expressing animals and measured the whole body upon control and *del-4(RNAi)* conditions.

(C) The DAF-16 ratio of the nucleus to the cytoplasm decreased upon *del-4(RNAi)*. *daf-2* RNAi was used as a positive control. We measured the intensity levels of DAF-16 in the nuclei and adjacent cytoplasm of the gut, using a strain expressing the p_{daf-16}DAF-16::GFP translational reporter.

(D) Elimination of *del-4* with RNAi lowers the expression levels of the DAF-16 target SOD-3. We measured the fluorescence intensity from the whole body of 4-day adult animals expressing the p_{sod-3} GFP transcriptional reporter upon control and *del-4* RNAi conditions.

(E) Depletion of *del-4* with RNAi increases the expression levels of HSP-4, an ER stress marker. We used animals expressing the transcriptional reporter p_{hsp-4}GFP and measured fluorescence intensity from the whole body upon control and *del-4(RNAi)* conditions.

(F) Cytoplasmic Ca²⁺ levels rise upon *del-4(RNAi)*. Measurement of intracellular Ca²⁺ levels using animals expressing the genetically encoded calcium indicator GCaMP2.0 driven by the *let-858* promoter for systemic expression. Measurments were obtained from the whole body.

(G) Increased AAK-2 expression levels were observed upon *del-4(RNAi)*. We measured mean fluorescence intensity from the whole body of animals expressing the translational reporter $p_{aak-2}AAK-2$::Tomato.

(H) The expression level of the SKN-1 target GST-4 increase upon treatment with *del-4(RNAi)*. The expression levels of animals expressing the transcriptional reporter p_{gst-4} GFP were measured from the whole body.

(I) Representative images of the designated reporters. Scale bars, 20 μ m apart from the images corresponding to P_{hsf-1}HSF-1::GFP (hypodermis nuclei) and DAF-16::GFP (gut nuclei), where the scale bar corresponds to 200 μ m. P_{hsf-1}HSF-1::GFP (hypodermis nuclei): 40x lens, DAF-16::GFP (gut nuclei): 20x, rest of the images: 5x lens. Left is anterior

(A-D, F, H) Four-day adult animals. (E, G) 3-day adult animals.

(A-H) Dot plots, dots represent the mean fluorescence intensity of independent biological replicates. Error bars represent SEM. ns p=0.1234, *p=0.0332, **p=0.0021, ***p=0.0002, ****p<0.0001. Two-way ANOVA analysis. (A) ctrl n= 257, *del-4(RNAi)* n=291, HS n=392, n = the number of hypodermis nuclei measured. (B) ctrl n=245, *del-4(RNAi)* n=177. (C) ctrl n=519, *del-4(RNAi)* n=733, daf-2(RNAi) n=642, n = the number of gut nuclei measured. (D) ctrl n=156, *del-4(RNAi)* n=154. (E) ctrl n=128, *del-4(RNAi)* n=154. (F) ctrl n=207, *del-4(RNAi)* n=217, (G) ctrl n=142, *del-4(RNAi)* n=127, (H) ctrl n=250, *del-4(RNAi)* n=245.

Figure S5. Animals lacking DEL-4 are resistant to exogenously applied dopamine, Related to Figure 5.

DEL-4 amelioration results in increased resistance to dopamine. We measured the time to paralysis in a 20 µl drop of 40 mM dopamine of ctrl, *del-4(tm717)*, *dat-1(tm903)* and *cat-2(e1112)* animals (Tables 1 and S4). *dat-1(tm903)* and *cat-2(e1112)* animals were used as controls. *dat-1* encodes for the dopamine transporter; thus, in the absence of DAT-1 dopamine is retrieved from the synapse back to the pro-synaptic cell accumulating at the synaptic cleft. Therefore, dat-1 mutants are expected to paralyze faster compared to wt. CAT-2 is involved in dopamine biosynthesis from tyrosine. Therefore, in the absence of CAT-2 reduced amount of dopamine would be released at the synaptic cleft and it would take more time for *cat-2* mutants to paralyze in dopamine compared to wt. We observed that *del-4* and *cat-2* mutant animals are resistant to dopamine, while *dat-1(tm903)* animals are sensitive. Experiments were performed with day-1 adult animals. Survival curve analysis was performed for estimation of significance. ns p=0.1234, *p=0.0332, **p=0.0021, ***p=0.0002, ****p<0.0001. Ctrl n=172, *del-4(tm717)* n=170, *dat-1(tm903)* n=170, *cat-2(31112)* n=100. n represents number of animals.

Figure S6. Amiloride and low pH block the homomeric DEL-4 sodium channel, Related to Figures 6 and 7.

(A) Membranous localization of DEL-4 on neuronal cells. Confocal images show the colocalization of GFP expression with the lipophilic dye Dil at the surface of neuronal cell bodies and processes, examined on animals expressing the p_{del-4}DEL-4::GFP translational reporter and stained with Dil. Left, p_{del-4}DEL-4::GFP expressing animals (green). Middle, Dil staining in Red. Right, merged images. We utilized merged images of z-stacks to assess colocalization. Neuronal cell bodies (arrows) and dendrites (small arrowheads) are indicated. Left is anterior. One day adult animals. Scale bar 20 μM. Confocal images (Z-stacks) at 63x lens.
(B) DEL-4 currents at neutral pH are inhibited at pH 4. Currents of the nuclease-free water-

injected controls and the truncated DEL-4(tm717) mutant currents are not blocked by acidic pH 4. Graphs show raw current upon perfusion with either pH 7.4 (filled circle) or pH 4 (open circle) as indicated, for *Xenopus* oocytes injected with the DEL-4 *wild-type* or *tm717* mutant, or water-injected controls. Lines connect data from individual oocytes. (n = (from left to right) 5, 5, 6) Currents were recorded at a holding potential of -60mV.

(C) Amiloride inhibits the DEL-4 channel. Current-voltage (I-V) relationships for *Xenopus* oocytes injected with *del-4* cRNA, following perfusion of oocytes with a physiological NaCl solution (1X ND96) (black circles), and in the presence of 500 μ M of the DEG/ENaC channel blocker amiloride (open circles) (n = 10). Voltage steps were from – 150 mV to +75 mV, from a holding potential of -60 mV.

(D) The DEL-4 channel is permeable to monovalent cations (Na⁺, Li⁺), as established by determining the ratio of the current at -150 mV when perfusing oocytes with NaCl, LiCl or KCl solutions (n = 10).

(E-F) Low pH in the range of 4.5-5.5 blocks the DEL-4 homomeric channel. Heterologously expressed DEL-4 channel, perfused with solutions of increasing pH starting from pH 4.5 to 7.5 (n = 5). Currents were recorded at a holding potential of -60mV, normalized to maximal currents (I/I_{max}), Kruskal-Wallis test and post-hoc Dunnett's multiple comparisons test found no significant difference in current ratio for the DEL-4(*tm*717) mutant controls, but DEL-4 wild-type currents were significantly blocked at low pH (n = 5 each). Amount of total cRNA (500 ng/µI) injected for each construct. Error bars represent Mean and SEM.

(G) DEL-4 ins not permeable for protons. Summary of reversal potential E_{rev} of DEL-4 expressing oocytes and controls (DEL-4(tm717) mutant and water-injected oocytes) when perfused with basal pH 7.4 (cyan) and acidic pH 4 (orange) (top to bottom, n= 6, 8, 3). Low pH did not statistically significantly change the E_{rev} as assessed by a paired Wilcoxon test (top to bottom, p=0.094, ns; p=0.844, ns; p =0.750, ns). DEL-4(tm7171) and water-injected controls have significantly lower currents which might contribute to higher variability. Data are presented as boxplots with median (dash), mean (cross) and min and max error bars. E_{rev} were calculated as described in Star methods.

(H) Representative traces of water-injected *Xenopus* oocytes used as controls of DEL-4 expressing oocytes when perfused with ND96 solution at various proton concentrations from a neutral baseline (pH 7.4). Currents were recorded at a holding potential of -60mV, and traces were baseline-subtracted and drift-corrected using Roboocyte2+ (Multichannels) software.

References

- Trinklein ND, Murray JI, Hartman SJ, Botstein D, Myers RM. The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell. 2004;15(3):1254-61.
- Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188-90.

Supplemental Tables

Abbreviation	Definition
a.u.	arbitrary units
ACh	Acetylcholine
AD	Alzheimer's Disease
ALS	Amyotrophic Lateral Sclerosis
AMP	Adenosine MonoPhosphate
AMPK	AMP-activated protein Kinase
ANOVA	one-way ANalysis Of Variance
AS	Acidic Stress
ASAP1	Accelerated Sensor of Action Potentials1 (Genetic Voltage Indicator)
ASICs	Acid Sensing sodium Channels
BLAST	Basic Local Alignment Search Tool
BS	Basal Slowing
BSA	Bovine Serum Albumin
BSR	Basal Slowing Response
BSRC	Biomedical Sciences Research Center
CaMKK2	Calcium/CalModulin-dependent protein Kinase Kinase 2
cAMP	cyclic Adenosine MonoPhosphate
cRNA	coplementary RNA
ctrl	control
DCVs	Dense Core Vesicles
DEG	DEGenerin
DEL	DEgenerin Like
Dil	Dioctadecyl tetramethylIndodicarbocyanine-disulphonic acid, lipophilic carbocyanine tracer
ds RNA	double stranded RNA
DsRED	Red fluorescent protein from Discosoma
EGFP	enhanced GFP
ENaC	Epithelial sodium (Na ⁺) Channel
ER	Endoplasmic Reticulum
ERC	European Research Council
Erev	average reversal potential
ERS	ER Stress
ERUPR	ER Unfolded Protein Response
ESF	European Social Fund
FOXO	FOrkhead boX O4
GABA	Gamma-AminoButyric Acid
GCaMP2.0	Genetically encoded CalciuM indicator 2.0

Table S1. List of abbreviations used in the paper, Related to Star methods.

Crean Elugrageant Bratain	
Green Fluorescent Protein	
Eserichia coli bacterial strain	
(4-(2-HydroxyEthyl)-1-PiperazineEthanesulfonic acid), a zwitterionic sulfonic acid buffering agent	
hour/hours	
Heat Stress	
Heat Shock transcription Factor 1	
Heat Shock Proteins	
Eserichia coli bacterial strain, commonly used for gene knockdown with RNAi	
current	
half-maximal inhibitory concentration	
maximal current	
interquartile range	
Current-voltage relationships	
kilobase	
voltage-gated potassium channel	
Key Resources Table	
Larval stage 4	
Long-Term Starvation	
isotonic buffer solution for <i>C. elegans</i>	
isotonic buffer solution for <i>C. elegans</i>	
a member of the mFruits family of monomeric red fluorescent proteins	
2-(N-Morpholino)EthaneSulfonic acid	
milligram	
millilitre	
millimolar	
messenger RNA	
milliVolt	
C. elegans wild type isolate, Bristol variation	
National Center for Biotechnology Information	
National Center for Research Resources	
physiological NaCl solution	
New England Biolabs	
nanogram	
nematode growth medium	
National Institutes of Health	
Nuclear Localization Signal	
Neuromuscular Junction	
Nuclear Factor erythroid 2 - related factor 2	
National Strategic Reference Framework	
Over Day	
Over Night	

OS	Oxidative Stress		
PCR	Polymerase Chain Reaction		
PD	Parkinson's Disease		
PKC	Protein Kinase C		
pPD95.77	plasmid vector		
pPK719	plasmid DNA carrying the coding sequence of the unc-119 gene		
pRF4	plasmid DNA carrying the coding sequence of the mutant collagene rol-6(su1006) causing a dominant "roller" phenotype		
RNAi	RNA interference or Post-Transcriptional Gene Silencing		
ROS	Reactive Oxygen Speicies		
sec	seconds		
SEM	Standard Error of the Mean		
SEpHluorin	Super-Ecliptic pHluorin, a pH sensitive GFP variant		
SGK1	Serum and Glucocorticoid-induced protein Kinase 1		
SLC5A11	sodium/SoLute Cotransporter-like 5A11		
SVs	Synaptic Vesicles		
TRP	Transient Receptor Potential		
TVEC	Two-Electrode Voltage Clamp		
UTRs	UnTranslated regions		
w/v	weight per volume		
wt	wild type		
YFP	Yellow Fluorescent Protein		
Δ	difference		
ΔE _{rev}	reversal potential shift		
μg	microgram		
μΙ	microlitre		
μm	micrometre		
μΜ	microMolar		

Neuron Name	Description	Neuronal type	Location	DELs expression
ADEL/R	Anterior DEirids Left/Right	mechanosensory, dopaminergic	head	DEL-3, DEL-4
ADF	Amphid neurons with Dual ciliated endings			
ASE	Amphid neurons with Single-ciliated Endings	gustatory, glutamatergic	head	DEL-2, DEL-3, DEL-4
ASH	Amphid neurons with Single-ciliated Endings	polymodal sensory, glutamatergic	head	DEL-2, DEL-4
ASI	Amphid neurons with Single-ciliated Endings	sensory (gustatory, thermosensory), insulin releasing	head	DEL-2 DEL-4
CEPDL/R	Dorsal Left/Right neurons of CEPhalic sensilla	mechanosensory, dopaminergic	head	DEL-2, DEL-3, DEL-4
CEPVL/R	Ventral Left/Right neurons of CEPhalic sensilla	mechanosensory, dopaminergic	head	DEL-3, DEL-4
DA 1-9	Ventral cord "dorsal A" motor neurons motor, cholinergic		body (ventral nerve cord)	DEL-4
DB 1-7	Ventral cord "dorsal B " motor neurons			DEL-4
NSML/R	neurops Left/Right hanosensory) (ante		pharynx (anterior bulb)	DEL-3, DEL-4
PDE	Posterior DEirid neurons		posterior half of the body	DEL-3, DEL-4
PHA	PHAsmid neurons	urons chemosensory, glutamatergic		DEL-2, DEL-3, DEL-4
РНВ	PHasmid neurons	chemosensory, glutamatergic	tail, right and left lumbar ganglia	DEL-2, DEL-3
PHC	PHasmid neurons	thermosensory, glutamatergic	tail, right and left lumbar ganglia	DEL-2, DEL-3
PVM	Posterior Ventral Microtubule neuronal cell	mechanosensory	left side to the posterior half of the body	DEL-4
URX	head neurons with nonciliated dendritic endings	oxygen and minor CO ₂ sensory, cholinergic	head	

Table S2. List of C.	elegans neurons	referred in the	paper, Related	to Figure 1.

VA 1-12	Ventral Cord motor neurons	motor, cholinergic	body (ventral nerve cord)	DEL-4
VB 1-11	Ventral Cord motor neurons	motor, proprioceptive	body (ventral nerve cord)	DEL-4
amphid	sensory organ consisting of 12 sensory neurons (ADF, ADL, AFD, ASE, ASG, ASH, ASI, ASJ, ASK, AWA, AWB, AWC) and one socket cell	sensory	head (posterior to the nerve ring)	
phasmid	sensory organ consisting of 3 sensory neurons (PHA, PHB, PQR), one sheath and two socket cells	sensory	tail (lateral sides, behind the rectum)	
deirid	a pair of sensory papillae		lateral cervical region	

*Information retreived form WORMATLAS

(https://www.wormatlas.org/neurons/Individual%20Neurons/Neuronframeset.html)

Table S3. List of genetic neuronal markers used in the paper, Related to Figure 1.

Neuronal Marker	Expression pattern	Type of Neurons	
OSM-10::GFP	ASH, ASI, PHA, PHB	sensory, glutamatergic	
р _{flp-8} GFP	ASE, URX, PVM, AUA, AVM	sensory	
p _{dat-1} GFP	CEP, ADE, PDE	dopaminergic	
TPH-1::GFP	NSM, ADF, HSN, AFD	serotonergic	
p _{acr-2} GFP	VA/B, DA/B	motor, cholinergic	
p _{unc-47} GFP	RME, AVL, RIS, DVB, VD, DD	motor, GABAergic	
p _{unc129} NLP-21::Venus	DA/B, MC	motor, cholinergic	

*Information retrieved form WORMBASE (https://wormbase.org/)

Table S4. List of C. elegans genes referred in the paper and their mammalian orthologs, Related	
to Star methods.	

C. elegans Gene	Definition of Nematode Gene	Human Ortholog	Definition of Human Ortholog
aak-2	AMP-Activated Kinase	PRKAA1 and 2	PRotein Kinase AMP-activated catalytic subunit Alpha 1 and 2
acd-1	ACid-sensitive Degenerin	ASIC4	Acid Sensing Ion Channel subunit family member 4
acr-2	AcetylCholine Receptor	CHRNA3 and 6	CHolinergic Receptor Nicotinic Alpha 3 subunit and alpha 6 subunit
age-1	AGEing alteration	PIK3CB, D and G	PhosphatidylInositol-4,5- bisphosphate 3-Kinase Catalytic subunit Beta, Delta and Gamma
asic-1	Acid-Sensing/Amiloride- Sensitive Ion Channel	SCNN1B, D and G	sodium channel epithelial 1 subunit beta, delta and gamma
cat-2	abnormal CATecholamine distribution	тн	Tyrosine Hydroxylase
che-2	abnormal CHEmotaxis	IFT80	IntraFlagellar Transport 80
daf-16	abnormal DAuer Formation	FOXO4	FOrkhead boX O4
daf-2	abnormal DAuer Formation	IGF1R, INSR and INSRR	insulin-like growth factor 1 receptor, insulin receptor and insulin receptor related receptor
dat-1	DopAmine Transporter	SLC6A2 and 3	solute carrier family 6 member 2 and 3
del-2	DEgenerin Like		
del-3	DEgenerin Like		
del-4	DEgenerin Like	SCNN1G	sodium channel epithelial 1 subunit gamma
dop-1	DOPamine receptor	DRD1	dopamine receptor D1
dop-2	DOPamine receptor	DRD3	dopamine receptor D3
dop-3	DOPamine receptor	DRD3	dopamine receptor D3
flp-8	FMRF-Like Peptide		
goa-1	G protein,O, Alpha subunit	GNAO1	G protein subunit alpha o1
gst-4	Glutathione S- Transferase		
hsf-1	Heat Shock Factor	HSF1 and 2	heat shock transcription factor 1 and 2
hsp-16.2	Heat Shock Protein		
hsp-4	Heat Shock Protein	HSPA5	heat shock protein family A (Hsp70) member 5
kin-1	protein KINase	PRKACA	protein kinase cAMP-activated catalytic subunit alpha
kin-2	protein KINase	PRKAR1B	protein kinase cAMP-dependent type I regulatory subunit beta
let-858	LEThal	CWC22	spliceosome associated protein homolog
lin-15	abnormal cell LINeage		
myo-2	MYOsin heavy chain structural genes	MYH1, 2 and 3	myosin heavy chain 1, 2 and 3
туо-3	MYOsin heavy chain structural genes	MYH1, 2 and 3	myosin heavy chain 1
nlp-21	Neuropeptide-Like Protein		

	OSMotic avoidance		
osm-10	abnormal		
pkc-1	Protein Kinase C	PRKCE	protein kinase C epsilon
pkc-2	Protein Kinase C	PRKCA	protein kinase C alpha and beta
pmp-3	Peroxisomal Membrane Prorein related	ABCD4	ATP binding cassette subfamily D member 4
rab-3	RAB family	RAB3A	member RAS oncogene family
rol-6	ROLIer: helically twisted, animals roll when moving	COLQ	collagen like tail subunit of asymmetric acetylcholinesterase
skn-1	SKiNhead	NFE2, NFE2L1, NFE2L2	Erythroid Nuclear Factor 2, NFE2 like bZIP transcription factor 1 and 2
snb-1	SyNaptoBrevin related	VAMP2	vesicle associated membrane protein 2
snt-1	SyNapTotagmin	SYT1	synaptotagmin 1
sod-3	SuperOxide Dismutase	SOD2	superoxide dismutase 2
tpa-1	tetradecanoyl phorbol acetate resistant	PRKCD and PRKCQ	protein kinase C delta and protein kinase C theta
tph-1	TryPtophan Hydroxylase	TPH1 and 2	tryptophan hydroxylase 1 and 2
xbp-1	X-box Binding Protein	XBP1	X-box binding protein 1
unc-119	UNCoordinated	UNC-119	lipid binding chaperone
unc-129	UNCoordinated	GDF10	growth differentiation factor 10
unc-43	UNCoordinated	CAMK2D	(calcium/calmodulin dependent protein kinase II delta
unc-47	UNCoordinated	SLC32A1	solute carrier family 32 member 1
unc-49	UNCoordinated		
unc-54	UNCoordinated	MYH1, 2 and 3	myosin heavy chain 1, 2 and 3

*Information retrieved from WORMBASE (https://wormbase.org/)